Modelado Computacional Rápido Basado en el Método del Elemento de Frontera Hacia el Diseño de un Aplicador Biomédico Ultrasónico

Autores/as

DOI:

https://doi.org/10.17488/RMIB.46.1.1

Palabras clave:

aplicador biomédico ultrasónico, método del elemento finito, método del elemento de frontera, modelado de campo acústico, ultrasonido focalizado

Resumen

El objetivo de este trabajo es analizar el uso del método del elemento de frontera (BEM) como una herramienta computacional rápida para resolver campos acústicos en modelos 3D. Una superficie radiante tridimensional SR propuesta se modelo por medio de BEM y del método del elemento finito (FEM). Se desarrollaron 4 modelos en el dominio de la frecuencia: 2 con la SR completa y 2 considerando un plano de simetría a la mitad de SR. Los modelos BEM se validaron con los modelos FEM por medio de contornos de presión a -3 dB y -6 dB, áreas dentro de los contornos, relación de forma elíptica Er y aproximación elipsoidal focal. Las diferencias promedio en presión y distancia focales fueron 39.875 Pa y 0.4515 mm, respectivamente; las áreas dentro de los contornos mostraron diferencias entre 0.6 mm2 and 2.3 mm2. La Er focal fue >92 %, mientras que la aproximación volumétrica elipsoidal mostró diferencias entre 0.0817-1.4632 mm3 a -3 dB, y 1.2354-4.1144 mm3 a -6 dB. Los resultados sugieren el uso de BEM para modelar el patrón acústico en medios sin pérdidas durante el diseño de aplicadores biomédicos ultrasónicos reduciendo el tiempo de solución de 22 h (FEM) a 2 min (BEM).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

C. R. Hill, J. C. Bamber, and G. R. ter Haar, Physical Principles of Medical Ultrasonics, 2nd ed. England: John Wiley & Sons, 2004, doi: https://doi.org/10.1002/0470093978.fmatter

D. A. Hutchins and G. Hayward, “The radiated field of ultrasonic transducers,” in Physical Acoustics, vol. 19, R. N. Thurston and A. D. Pierce, Eds., United States of America:Academic Press, 1990, pp. 1–80, doi: https://doi.org/10.1016/B978-0-12-477919-8.50007-8

C. J. Diederich and K. Hynynen, “Ultrasound technology for hyperthermia,” Ultrasound Med. Biol., vol. 25, no. 6, pp. 871–887, 1999, doi: https://doi.org/10.1016/s0301-5629(99)00048-4

G. T. Haar and C. Coussios, “High intensity focused ultrasound: Physical principles and devices,” Int. J. Hyperth., vol. 23, no. 2, pp. 89–104, 2007, doi: https://doi.org/10.1080/02656730601186138

M. Lafond, A. Payne, and C. Lafon, “Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples,” Int. J. Hyperth., vol. 41, no. 1, 2024, art. no. 2389288, doi: https://doi.org/10.1080/02656736.2024.2389288

C. J. Trujillo Romero and D.-L. Flores, Diagnosis and Treatment of Cancer using Thermal Therapies, 1st ed. Boca Raton, FL, United States of America: CRC Press, 2023, doi: https://doi.org/10.1201/9781003342663

E. A. Filonenko and V. A. Khokhlova, “Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound,” Acoust. Phys., vol. 47, no. 4, pp. 468–475, 2001, doi: https://doi.org/10.1134/1.1385422

J. Gao, S. Cochran, and Z. Huang, “Ultrasound beam distortion and pressure reduction in transcostal focused ultrasound surgery,” Appl. Acoust., vol. 76, pp. 337–345, 2014, doi: https://doi.org/10.1016/j.apacoust.2013.06.003

S. Paliwal and S. Mitragotri, “Therapeutic opportunities in biological responses of ultrasound,” Ultrasonics, vol. 48, no. 4, pp. 271–278, 2008, doi: https://doi.org/10.1016/j.ultras.2008.02.002

I. Rivens, C. Jayadewa, P. Mouratidis, and G. Ter Haar, “Histological characterization of HIFU lesions,” Int. J. Hyperth., vol. 41, no. 1, 2024, art. no. 2389292, doi: https://doi.org/10.1080/02656736.2024.2389292

C. Lafon, D. Melodelima, R. Salomir, and J. Y. Chapelon, “Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound,” Int. J. Hyperthremia, vol. 23, no. 2, pp. 153–163, 2007, doi: https://doi.org/10.1080/02656730601173029

M. Dahan, M. Cortet, C. Lafon, and F. Padilla, “Combination of Focused Ultrasound, Immunotherapy, and Chemotherapy: New Perspectives in Breast Cancer Therapy,” J. Ultrasound Med., vol. 42, no. 3, pp. 559–573, 2023, doi: https://doi.org/10.1002/jum.16053

J. H. Hwang and L. A. Crum, “Current status of clinical high-intensity focused ultrasound,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2009, pp. 130–133. doi: https://doi.org/10.1109/iembs.2009.5335244

O. Ginsburg, C.-H. Yip, A. Brooks, A. Cabanes, et al., “Breast Cancer Early Detection: A Phased Approach to Implementation,” Cancer, vol. 126, no. S10, pp. 2379–2393, 2020, doi: https://doi.org/10.1002/cncr.32887

B. S. Bachu, J. Kedda, I. Suk, J. J. Green, and B. Tyler, “High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications,” Ann. Biomed. Eng., vol. 49, pp. 1975-1991, 2021, doi: https://doi.org/10.1007/s10439-021-02833-9

Y.-H. Hsiao, S.-J. Kuo, H.-D. Tsai, M.-C. Chou, and G.-P. Yeh, “Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy,” J. Cancer, vol. 7, no. 3, pp. 225–231, 2016, doi: https://doi.org/10.7150/jca.13906

E. Van ’t Wout, P. Gélat, T. Betcke, S. Arridge, and P. G. Elat, “A fast boundary element method for the scattering analysis of high-intensity focused ultrasound,” J. Acoust. Soc. Am, vol. 138, pp. 2726–2737, 2015, doi: https://doi.org/10.1121/1.4932166

F. Shen, F. Fan, F. Li, L. Wang, et al., “An efficient method for transcranial ultrasound focus correction based on the coupling of boundary integrals and finite elements,” Ultrasonics, vol. 137, 2024, art. no. 107181, doi: https://doi.org/10.1016/j.ultras.2023.107181

P. Burrascano, S. Callegari, A. Montisci, M. Ricci, and M. Versaci, Eds., Ultrasonic Nondestructive Evaluation Systems. Switzerland: Springer, 2015, doi: https://doi.org/10.1007/978-3-319-10566-6

S. Marburg, “SIX BOUNDARY ELEMENTS PER WAVELENGTH: IS THAT ENOUGH?,” J. Comput. Acoust., vol. 10, no. 01, pp. 25–51, 2002, doi: https://doi.org/10.1142/S0218396X02001401

L. L. Thompson, “A review of finite-element methods for time-harmonic acoustics,” J. Acoust. Soc. Am., vol. 119, no. 3, pp. 1315–1330, 2006, doi: https://doi.org/10.1121/1.2164987

S. R. Haqshenas, P. Gélat, E. van ’t Wout, T. Betcke, and N. Saffari, “A fast full-wave solver for calculating ultrasound propagation in the body,” Ultrasonics, vol. 110, 2021, art. no. 106240, doi: https://doi.org/10.1016/j.ultras.2020.106240

S. Kirkup, “The Boundary Element Method in Acoustics: A Survey,” Appl. Sci., vol. 9, no. 8, 2019, art. no. 1642, doi: https://doi.org/10.3390/app9081642

S. Preuss, C. Gurbuz, C. Jelich, S. K. Baydoun, and S. Marburg, “Recent Advances in Acoustic Boundary Element Methods,” J. Theor. Comput. Acoust., vol. 30, no. 03, 2022, art. no. 2240002, doi: https://doi.org/10.1142/S2591728522400023

Y. Liu, “On the BEM for acoustic wave problems,” Eng. Anal. Bound. Elem., vol. 107, pp. 53–62, 2019, doi: https://doi.org/10.1016/j.enganabound.2019.07.002

S. Marburg, “Boundary Element Method for Time-Harmonic Acoustic Problems,” in Computational Acoustics. CISM International Centre for Mechanical Sciences, M. Kaltenbacher, Ed., 2018, Switzerland: Springer, pp. 69–158, doi: https://doi.org/10.1007/978-3-319-59038-7_3

I. Harari and T. J. R. Hughes, “A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics,” Comput. Methods Appl. Mech. Eng., vol. 97, no. 1, pp. 77–102, 1992, doi: https://doi.org/10.1016/0045-7825(92)90108-V

J. Assaad, A.-C. Hladky, and B. Cugnet, “Application of the FEM and the BEM to compute the field of a transducer mounted in a rigid baffle (3D case),” Ultrasonics, vol. 42, no. 1–9, pp. 443–446, 2004, doi: https://doi.org/10.1016/j.ultras.2003.12.032

A. G. Santiago, L. C. Trintinalia, and M. A. Gutierrez, “Boundary element method applied to ultrasound elastography,” Eng. Anal. Bound. Elem., vol. 62, pp. 154–162, 2016, doi: https://doi.org/10.1016/j.enganabound.2015.10.005

P. Gélat, G. ter Haar, and N. Saffari, “Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs,” Phys. Med. Biol., vol. 56, no. 17, pp. 5553–5581, 2011, doi: https://doi.org/10.1088/0031-9155/56/17/007

P. Gélat, G. ter Haar, and N. Saffari, “Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen,” J. Phys. Conf. Ser., vol. 457, 2013, art. no. 012002, doi: https://doi.org/10.1088/1742-6596/457/1/012002

R. Martínez-Valdez, A. Ramos Fernández, A. Vera Hernandez, and L. Leija Salas, “Design of a low power hybrid HIFU applicator for haemostasis based on acoustic propagation modelling,” Int. J. Hyperth., vol. 32, no. 2, pp. 121–131, 2016, doi: https://doi.org/10.3109/02656736.2015.1112437

G. Ter Haar and C. Coussios, “High intensity focused ultrasound: past, present and future.,” Int. J. Hyperthermia, vol. 23, no. 2, pp. 85–7, 2007, doi: https://doi.org/10.1080/02656730601185924

H. P. Kok, E. N. K. Cressman, W. Ceelen, C. L. Brace, et al., “Heating technology for malignant tumors: a review,” Int. J. Hyperth., vol. 37, no. 1, pp. 711–741, 2020, doi: https://doi.org/10.1080/02656736.2020.1779357

C. R. Hill and G. R. ter Haar, “High intensity focused ultrasound—potential for cancer treatment,” Br. J. Radiol., vol. 68, no. 816, pp. 1296–1303, 1995, doi: https://doi.org/10.1259/0007-1285-68-816-1296

D. Melodelima, W. A. N’Djin, H. Parmentier, S. Chesnais, M. Rivoire, and J.-Y. Chapelon, “Thermal Ablation by High-Intensity-Focused Ultrasound Using a Toroid Transducer Increases the Coagulated Volume. Results of Animal Experiments,” Ultrasound Med. Biol., vol. 35, no. 3, pp. 425–435, 2009, doi: https://doi.org/10.1016/j.ultrasmedbio.2008.09.020

C. A. Cain and S. Umemura, “Concentric-Ring and Sector-Vortex Phased-Array Applicators for Ultrasound Hyperthermia,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 5, pp. 542–551, 1986, doi: https://doi.org/10.1109/TMTT.1986.1133390

S. Umemura and C. A. Cain, “The sector-vortex phased array: acoustic field synthesis for hyperthermia,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 36, no. 2, pp. 249–257, 1989, doi: https://doi.org/10.1109/58.19158

Descargas

Publicado

2025-01-01

Cómo citar

Martínez-Valdez, R., & Bazán, I. (2025). Modelado Computacional Rápido Basado en el Método del Elemento de Frontera Hacia el Diseño de un Aplicador Biomédico Ultrasónico. Revista Mexicana De Ingenieria Biomedica, 46(1), 6–21. https://doi.org/10.17488/RMIB.46.1.1

Número

Sección

Artículos de Investigación

Citas Dimensions