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ABSTRACT
Selecting a representative core collection (CC) is a proven and effective strategy for overcoming the expenses and 
difficulties of managing genetic resources in gene banks around the globe. Because of the diverse applications avai-
lable for these sub-collections, several algorithms have been successfully implemented to construct them based on 
genotypic, phenotypic, passport or geographic data (either by individual datasets or by consensus). However, to 
the best of our knowledge, no single comprehensive datasets has been properly explored to date. Thus, researchers 
evaluate multiple datasets in order to construct representative CCs; this can be quite difficult, but one feasible solu-
tion for such an evaluation is to manage all available data as one discrete signal, which allows signal processing tools 
(SPTs) to be implemented during data analysis. In this research, we present a proof-of-concept study that shows the 
possibility of mapping to a discrete signal any type of data available from genetic resource collections in order to 
take advantage of SPTs for the construction of CCs that adequately represent the diversity of two crops. This me-
thod is referred to as ‘SPT selection.’ All available information for each element of the tested collections was analy-
sed under this perspective and compared when possible, with one of the most used algorithms for CC selection. Ge-
notype-only SPT selection did not prove as effective as standard CC selection did not prove as effective as standard 
CC selection algorithms; however, the SPT approach can consider genotype alongside other types of information, 
which results in well-represented Ccs that consider both the genotype and agromorphological diversities present 
in original collections. Furthermore, SPT-based analysis can evaluate all available data both in a comprehensive 
manner and under different perspective, and despite its limitations, the analysis renders satisfactory results. Thus, 
SPT-based algorithms for CC selection can be valuable in the field of genetic resources research, management and 
exploitation.       
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RESUMEN
La selección de una colección núcleo (core-collection) representativa (CC) es una estrategia comprobada y eficaz 
para superar los gastos y las dificultades de la gestión de los recursos genéticos en los bancos de germoplasma de 
todo el mundo. Debido a las diversas aplicaciones disponibles para estas subcolecciones, se han implementado con 
éxito varios algoritmos para construirlos en base a datos genotípicos, fenotípicos, de pasaporte o geográficos (ya 
sea por conjuntos de datos individuales o por consenso). Sin embargo, hasta donde tenemos conocimiento, no se 
han explorado adecuadamente conjuntos de datos integrales hasta la fecha. Por lo tanto, los investigadores evalúan 
conjuntos de datos múltiples para construir CCs representativos; esto puede ser bastante difícil, pero una solución 
factible para tal evaluación es administrar todos los datos disponibles como una señal discreta, que permite imple-
mentar herramientas de procesamiento de señal (SPT) durante el análisis de datos. En esta investigación, presen-
tamos un estudio de prueba de concepto que muestra la posibilidad de asignar a una señal discreta cualquier tipo 
de datos disponibles de colecciones de recursos genéticos para aprovechar los SPT para la construcción de CC que 
representen adecuadamente la diversidad de dos cultivos. Este método se conoce como "selección de SPT." Toda 
la información disponible para cada elemento de las colecciones analizadas se analizó bajo esta perspectiva y se 
comparó cuando fue posible, con uno de los algoritmos más utilizados para la selección de CC. La selección de SPT 
de solo genotipo no resultó tan efectiva como los algoritmos de selección de CC estándar; sin embargo, el enfoque 
SPT puede considerar el genotipo junto con otros tipos de información, lo que da como resultado CCs bien repre-
sentados que consideran tanto el genotipo como las diversidades agromorfológicas presentes en las colecciones 
originales. Además, el análisis basado en SPT puede evaluar todos los datos disponibles, tanto de manera integral 
y bajo diferentes perspectivas, y a pesar de sus limitaciones, el análisis arroja resultados satisfactorios. Por lo tanto, 
los algoritmos basados en SPT para la selección de CC pueden ser valiosos en el campo de la investigación, gestión 
y explotación de recursos genéticos. 

PALABRAS CLAVE: Core Collection, SPT , Banco de germoplasma, genotipo
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INTRODUCTION
 One of the most promising techniques for conserving 

the diversity of genetic resources is ex situ genebank 
germoplasm collection. A significant effort has been 
made on a global scale to perserve, characterize, dis-
tribute and utilise genetic resource in order to under-
stand their biological phenomena and confront the 
vulnerable situation regarding the sustainability of 
future human development [1, 2]. As the size of germo-
plasm colections increase, it becomes difficult to 
appropriately manage and extensively evaluate them 
[3]; thus, the core collection (CC) concept  [4] has become 
a fundamental genetic resource management approach 
and exploits the potential of a complete collection in 
terms of viable data management and moetary 
expenses [5, 6, 7, 8].

Different CCs have different purposes characteristics 
and evaluation criteria [7, 9, 10, 11]; thus, several different 
algorithms and informatics tools have been developed 
and implementend [12, 13, 14, 15] with different approaches 
for satisfying particular needs of each CC. Because 
these CCs are constructed mainly on the basis of geno-
typic, phenotypic, passport or geographic data (either 
by individual datasets or by consensus) [16], there is a 
lack of all-inclusive datasets; this limits the possibility 
of generating a CC that may satisfy most basic and 
applied genetic resource research programs. To the 
best of our knowledge, no single comprehensive data-
sets has been properly explored to date.

One possible method to create a comprehensive data-
set is to represent the availabe data as numerical val-
ues. Several methods exist that represent genomic 
information into numerical values [17] and agromor-
phological traits (ATs) into scores [18]. Through this 
mapping process, treating each data vector as a dis-
crete signal that can, in  turn, be analysed by signal 
processing tools (SPTs) is possible, thus providing and 
effective tool for a comprehensive evaluation of data-
sets. We present a proof-of-concept study that shows 

the possibility of mapping to a discrete signal any type 
of data available from genetic resource collections in 
order to take advantage of SPTs for CC selections; this 
possibility provides new decision-making criteria for 
genetic resource management and research. 

METHODOLOGY

Mapping data
Each input data must be mapped to a numeric value. 

This is a fundamental process of the algorithm bea-
cause it enable different  datasets to be analysed 
together, regardless of their nature. In this manner, 
dissimilar passport data, single nuceotide polymor-
phisms (SNPs), restriction fragment length polymor-
phisms (RFLPs), geographic information and pheno-
typical traits can be included in one comprehensive 
dataset. To consistently represent each data type, ref-
erence tables are implemented according to the nature 
of each particular data: genetic information (originally 
represented as character elements) is now represented 
by a numeral vector, and trait variation, simple 
sequence repeat (SSR) molecular markers and pass-
port data can be represented as either binary or nor-
malized data depending on the quantitative/qualita-
tive nature of the data. The original data and reference 
tables for this study are available in supplementary 
material ??. Data transformation for this study ren-
dered a matrix containing the representation of MC 
samples (i1, i2, i3, …, in) with ( j1, j2, j3, …, jn) elements 
each, where n is the total number of samples, and m is 
the number of included samples characteristics, repre-
sented by a numerical values as data(i,j).

Signal construction
Numerical representations of each jth data element 

can be treated as frequency values in m data time in 
such a manner that each ith sample is treated as a dis-
crete signal. The i signal correspond to the information 
behaviour from each sample. This perspective will 
enable the implementation of SPTs such as the dis-
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crete Fourier transform and power spectrum compari-
sion. Although SPTs can be implemented on all data 
available for each sample, not all data elements con-
tain the same informativeness value to discriminate 
between samples. To overcome the informative differ-
ence in each j element of data, a principal component 
analysis (PCA) can be perfomed to rearrange data into 
a new matrix that has the high informative elements 
of data at the beginning and that arranges subsequent 
elements acording to their informativeness, discard-
ing those whose variance equals 0. This process ren-
ders two new matrices: the original characteristics 
mapped vectors matrix (x) and rearranged variance 
value matrix (X). Matrix X, therefore, contains n sam-
ples that are formed by a numerical vector with m=m-
(non informative characteristics).

Fast Fourier transform
The main objective of Fourier transform is the decom-

position of any signal into a complex histogram of 
frequencies. Signal function is then represented as a 
vectorial function whose angle and magnitude deter-
mine a sampled point in the signal [19].

The original Fourier model is expressed as follows:
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where x is the temporal variable, ξ it the frequential 
variable, i is a -1 square root and e is the natural expo-
nent.

From equation (1), a derivate can be determined for 
any point ξ sampled in the signal.

(2)

Fourier transform can be implemented into any com-
plex numerical series, but in a practical sense, the 
computational cost increases exponentially.

Thus, fast Fourier transform (FFT) is more often 
implemented and can be defined according to Cooley-
Tukey algorithm [20] as follows:

where N is the vector length, x is the temporal vari-
able, i is a -1 square root and e is the natural exponent; 
in such matter that an euclidean representation – with 
the angle, magnitude and phase that corresponds to 
their position in the signal – exists for any signal dot.

Therefore, mapping any signal into a vectorial repre-
sentation that contains information from every origi-
nal signal dot is possible. From this complex vector, 
useful data can be retrieved to establish a comparison 
between them that  indirectly represents the original 
signal’s juxtaposition [21].

Distance matrix computation
Inspired by the genomic signal processing align-

ment-free distance (GAFD) model [22], each signal cor-
responding to the PCA-mapped accesions data in a set 
Ŝi was converted into its frequency representation by 
applying discrete Fourier transform. Its power spec-
trum Fi was then computed. Subsquently, the distance 
d(i,j) for a given pair of comprehensive data signal was 
calculated by obtaining the mean square error (MSE) 
of their respective power spectra:

(3)

(4)

Finally, a distance matrix (DM) was created by per-
forming a pairwise comparison of all sequences in 
the set.

In parallel, we construted a point-to-point (RAW) DM 
on the basis of the MSE given to a pair of signal prior to 
the PCA analysis.
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FIGURE 1. General workflow of the FFT-based core collection selection algorithm. PCA: Principal Component Analysis;
FFT: Fast Fourier Transfrom; CC: Core Collection.

Core collection selection
Selecting a CC by this method requires the generation 

of a DM for each sample of the MC; this provides the 
interrelations among samples and enables adequate 
selection. A schematic of the complete workflow is 
present in Fig. 1

In the past, several methodological procedures have 
been implemented to select K elements from an MC on 
the basis of information provided by its DM; among 
such procedures, the most frequently used one is the 
hierarchical clustering method [11]. However, the cur-
rent algorithm does not rely on hierarchical clustering 
for CC selection, instead – similar to the least distance 
stepwise sampling method [23] – CC elements are 
selected by an iterative process, where r samples are 
selected by different criteria (which may be individu-
ally implemented) on each iteration.

Selection criteria (based on the MD without hierarchi-
cal clustering) for the current algorithm is as follows:

a. The ith sample with the most lower distance  val-
ues among jth elements.

b. The ith sample with the most higher distance val-
ues among jth elements.

c. The ith sample with a lower distance average.
d. The ith sample with a higher distance average.
e. The ith sample with a lower overall distance.
f. The ith sample with a higher overall distance.

In cases where multiple samples share selection val-
ues, an appearance priority will complete the criteria.

An example of selection process is present in Fig. 2  
and its final result is present in Fig. 3.

Once the selected samples (r) are included in the 
future CC, they (along with others that are identical to 
them (s)) are removed from X for the next iteration; 
then, a DM2 with n2 = n – r – s is calculated. This process 
will continue Z times until R>= K, where R = (r1 + r2 + … 
+ rZ) and K = predefined CC elements desired.
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FIGURE 2. First three principal component’s distribution of Rdata (a), methodology’s first (b),
second (c) and third (d)  iteration; final K=72 

a) b)

c)

d)

Evaluation of the selected core collection
As discussed previously, the best way to evaluate a 

CC depends on the purpose of that CC, and eve if it can 
be evaluated from the same dataset from which it was 
constructed, evaluating it with a diferent dataset [7] is 
desirable. In this study, we use other datasets for our 
evaluation whenever possible.The list given below 
provides the evaluation parameters implemented in 
this study.

a. The average distance between each MC sample 
and the nearest CC sample (ANE) can be calcu-
lated using the equation as follows:

(5)
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FIGURE 3. First three principal component’s distributions of K=27 CC selection (X) from Rdata MC.

element whose closest CC element is k, including 
itself, thus rendering L total comparisons. The 
ideal ANE value is 0, where each sample of the CC 
represents itself and those similar to it. This 
parameter evaluates the homogeneity of the rep-
resented MC diversity.

b. The average distance between each CC sample 
and the nearest CC sample (ENE) can be calcu-
lated using the equation as follows:

(6)

where K is all CC elements, k is each CC element 
and D is the distance between k and its closest 
CC element cCC, excluding itself, in L total com-
parisons. With such an evaluation parameter, 
higher dispersion renders higher scores with the 
aim of evaluating the dispersion among selected 
CC elements.

c. The average distance between CC samples (E) 
can be determined applying the equation as fol-
lows:

(7)

where K is all CC elements, k is each CC element 
and D is the distance between k and all other jth 
CC elements cCC, excluding itself, in L total com-
parisons. This evaluation parameter indicates 
higher scores when CC elements have greater dis-
tances between themselves.

While previous evaluation parameters are useful 
for data dispersion analysis, such parameters will 
not evaluate how well the distribution of the MC 
is represented on the CC; therefore, the distribu-
tion comparisons tests that were included are as 
follows:

d. The homogeneity test (F – test for variances and t 
– test for means; α= 0.05) between the CC and MC 
for each trait can be represented as a percentage 
of traits that are statistically different (MD for 
means and VT for variances) [9].

e. The coincidence rate (CR) can be calculated using 
the equation as follows:

(8)

where R is the range of each m trait, and M rep-
resents the number of traits.
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f. The variable rate (CV) can be calcuated using the 
equation as follows:

(9)

where CV is the coefficient of the variation of 
each m trait in the CC and MC, and M is the num-
ber of traits. According to Hu et al. [10] a valid CC 
has CR > 80 and MD <20, which are the limits for 
the ideal representation of the identity and dis-
tribution of the MC.

g. The alleles coverage (CA) can be calculated using 
the equation as follows:

(10)

where ACC is a set of alleles in the CC, and AMC 
is a set of alleles in the MC; ACC meansures the 
percentage of alleles from the MC that are pres-
ent in the CC [12].

To compare the obtained CCs with an established 
methodology, we implemented Core Hunter 2 (CH) [13] 
as a reference and used it with the program’s default 
parameters on the agrological and genomic datasets.

Experimental datasets
To determine the efficiency of the analysis of data 

behaviour by point-to-point direct comparison, a syn-
thetic dataset esa constructed using binary data 
(Sdata) with manageable n and m elements .

To test the algorithm in real biological-context sce-
narios, the CCs from different Mcs were constructed 
and evaluated. 

To test the algorithm’s CCs versus the scores of the 
MCs, 780 rice (Oriza sativa (L.)) accession and 423 fox-
tail millet (Setaria italica subspitalica (L.) P. Beauv.) 

accession data were retrieved from the then National 
Institute of Agrobiological Sciences (now National 
Agriculture and Food Research Organization [NARO]) 
http://www.gene.affrc.go.jp/databases_en.php as well as 
361 maize (Zea mays (L.)) from the International Maize 
and Wheat Improvement Center public repository.

According to the available data, different datasets 
were assembled.  The 762 SNPs from the 780 rice acce-
sion retrieved from the NARO database (Rdata) were 
divided arbitrarly into two subsets of 331 SNPs each 
for constructing two smaller datasets (RdataI and 
RdataIII). In addition, ATs were categorized and 
mapped into the binary data for 273 of the 780 acces-
sions, resulting in 38 variables (RdataII). The variables 
from 423 foxtail millet genotypes with transposon 
displays [24] were used as a single dataset (Fdata). For a 
subset of 141 accessions (FdataI), 9 ATs were catego-
rized and mapped into binary data, resulting in 28 
variables (FdataII). The maize available information 
was mapped into 0-1 values (Mdata). The substitution 
tables used during this mapping are presented as sup-
plementary material 1.

Implementation
All procedures were implemented in python 3.6, 

codes are available as supplementary material 2. 

A graphical interface was developed including a 
SQLite3 database (https://sqlitebrowser.org/) in order to 
store data for future comparison and further analysis. 
This implementation includes a previously described 
K-means based CC selection algorithm [25].

RESULTS AND DISCUSSION

Selection and evaluation
The selection criteria were chosen to look for the best 

possible distribution of selected CC elements within 
the DM. Although hierarchical clustering has proven 
to be an effective method for determining collection 

ƒ̂(ℇ)=∫
−∞

∞

ƒ( x)e−2πi x ℇ
dx (1)

ƒ( x)[cos2π e ℇ+i∗sin
2πe ℇ] (2)

Xk=∑
n=0

N−1

xn e
−iπ k

n

N
(3)

D(i , j)=∑
x

( F̂ i(x)−F̂ j(x))
2

(4)

ANEtot=
1

L
∑
k=1

K

∑
j=1

J

D(k−cMC j) (5)

ENEtot=
1

L
∑
k=1

K

D (k−cCC) (6)

Etot=
1

L
∑
k=1

K

∑
j=1

J

D(k−cCCj) (7)

CR=
1

M
∑
m=1

M RCC

RMC

(8)

CV=
1

M
∑
m=1

M CV CC

CV MC

(9)

CA=[|1−(|1−ACC|I AMC)|] (10)

ƒ̂(ℇ)=∫
−∞

∞

ƒ( x)e−2πi x ℇ
dx (1)

ƒ( x)[cos2π e ℇ+i∗sin
2πe ℇ] (2)

Xk=∑
n=0

N−1

xn e
−iπ k

n

N
(3)

D(i , j)=∑
x

( F̂ i(x)−F̂ j(x))
2

(4)

ANEtot=
1

L
∑
k=1

K

∑
j=1

J

D(k−cMC j) (5)

ENEtot=
1

L
∑
k=1

K

D (k−cCC) (6)

Etot=
1

L
∑
k=1

K

∑
j=1

J

D(k−cCCj) (7)

CR=
1

M
∑
m=1

M RCC

RMC

(8)

CV=
1

M
∑
m=1

M CV CC

CV MC

(9)

CA=[|1−(|1−ACC|I AMC)|] (10)



L. I. López-Flores et al. Signal-Processing tools for core-collection selection from genetic-resource collection 9

structure and sampling CC [26] and although it has been 
implemented in different crop [27, 28] and included in 
various selection algortihms [11], hierarchical recon-
struction presents the challenge of selecting an appro-
priate model for biological interpretation that can be 
applied to everything from unweighted pair-group 
averages to Markov models in Bayesian estimations 
[29]. To avoid the challenge of selecting a reconstruc-
tion model, we decided to work strictly with the DM. 
By selecting the items described in this methodology, 
we aimed to retrieve representative elements from 
among the distributions of collections; however, 
because of its iterative nature, this methodology may 
render high redundancy under certain data distribu-
tions. Despite this limitation, the methodology has 
proven to be capable of selecting representative ele-
ments of the MC’s diversity.

Evaluation criteria were applied according to Odong 
et al. [7] without excluding the classic criteria used in [9, 

10]. The selected CCs render proper results in general 
terms. As expected, selected CCs did not always reach 
for optimal values for MD and CR, this is due the fact 
that it is not the aim of the selection method to render 
a CC with similar distribution to that of the MC, but to 
make sure to include as much diversity as possible.

It is our belief that scoring the CC sets obtained with 
these methodologies will enable genetic resource 
banks to provide clear descriptors of what their CC 
strengths and limitations are with respect to the MC 
from which they come and will provide adequate 
tools for determining the possible purposes of the 
selected CCs.

Although several representations of genotypic char-
acteristics (particulary those involving DNA sequences 
[30, 31, 32]) have been proposed, real-number-based map-
pings have not been discarded, indeed, this type of 
mapping has been highly studied for signal analysis 
even when they share two principal problems: the 

preferential magnitude of some nucleotides and the 
non-equidistance of all nucleotides [33, 34]. The arbitrary 
values selected for SNP’s numerical representation of 
genotypes aim  to maintain equidistance relations 
among purines and among pyrimidines in such a man-
ner that the same distance is also perserved between 
at least one of them and the undetermined values. ATs 
are represented as binary data. This representation 
may prove useful for discrete data but requires a clus-
tering procedure for continuous data. In this study, we 
arbitrarily generated clusters for the latter and then 
represented them as the former. Although this imple-
mentation may no be the most accurate regarding bio-
logical or agronomical significance, it serves as the 
first approach for testing the feasibility of the use of 
signal processing techniques when merging several 
datasets to construct one CC.

RAW versus FFT
The RAW comparison establishes a distance value on 

the basis of the average distance between each mapped 
value on each element while the FFT power spectra 
implementation compares the signals in the frequency 
domain. Using FFT, establishing a DM on the basis of 
how data ‘shifted’ rather than on the basis of average 
point-to-point comparisons was possible. The FFT 
approach provides a different DM, where its compared 
elements are clustered based on the similarity of the 
shift is in the opposite phase. We expect that the pro-
cedure reveal more info about the relations between 
the individual components within each element.

FFT comparisons of signal without PCA are a good 
approach for CC selection. Nervertheless, PCA imple-
mentation enables us to avoid possible misleads in 
random data arrangements, as, for example, palin-
dromic data that could result in the same power spec-
tra. Moreover, through PCA, we could organize data 
according to their levels of impact on the difference 
between accessions, which --when their magnitudes 
were obtained-- inherently rendered a representation 
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of informativity relations among values. This ‘data 
behaviour’ was used as the element for pairwise com-
parisons, and although this approach clusters differ-
ently from RAW comparisons, we belive that it will 
provide a new perspective for CC selection and open 
the possibility of further data exploration.

Our first approach was to measure the comparisons 
under different K values. We compared the approach 
of the RAW signals whit the PCA-FFT- treated signals. 
Results from Sdata, Fdata, and Rdata are presented in 
Tables 1-3. As expected most evaluation criteria 
improved as K increased.

TABLE 1. K selected CC scores from MC Sdata Raw
and PCA Signal evaluated with Sdata

TABLE 3. K selected CC scores from MC Rdata Raw
and PCA Signal evaluated with Rdata 

Tabla	1	
	
	

 Sdata PCA Sdata RAW 

K 12 18 24 12 18 24 

ANE 0.2348 0.2311 0.2164 0.2697 0.2287 0.2164 

ENE 0.339 0.3386 0.3401 0.3696 0.3228 0.3214 

E 0.5562 0.5622 0.5547 0.5558 0.5333 0.5299 

MD 0 0 0 0 0 0 

VT 41.6667 50 41.6667 33.3333 58.3333 41.6667 

CR 64.8403 71.6918 73.7154 60.6447 75.2465 80.4716 

CV 9080.798 61.2074 86.0876 136.6446 139.1418 280.8481 

AR 74.3363 81.4159 89.3805 61.9469 77.8761 80.531 

	
	

Tabla	2	
	
	

 Edata PCA Edata RAW 

K 48 72 96 48 72 96 

ANE 0.6454 0.6423 0.6407 0.6489 0.6431 0.643 

ENE 0.646 0.6472 0.6472 0.65 0.6448 0.6452 

E 0.7297 0.7301 0.7301 0.7231 0.7236 0.7239 

MD 1.1799 0.59 0.59 1.7699 1.4749 1.4749 

VT 50.4425 53.6873 56.6372 50.7375 56.0472 55.1622 

CR 83.6883 87.0605 88.9709 83.5334 86.9308 87.7461 

CV 0.8494 0.419 0.7357 1.1037 4.74 0.7361 

VA 96.3945 97.7652 98.5995 95.3516 97.497 97.4374 

	
	

Tabla	3	
	
	

 Rdata PCA Rdata RAW 

K 48 96 156 48 96 156 

ANE 0.6013 0.5966 0.5942 0.6118 0.6052 0.6042 

ENE 0.5939 0.5944 0.5981 0.6106 0.6085 0.609 

E 0.7105 0.7074 0.7051 0.703 0.7038 0.7054 

MD 9.1146 5.9896 3.9062 10.1562 5.4688 4.4271 

VT 42.4479 48.6979 58.0729 57.5521 72.9167 70.0521 

CR 70.5716 78.477 83.2957 69.9022 78.1045 80.0167 

CV 1.0171 0.4343 0.3137 7.9407 0.4375 1.1344 

VA 92.6758 96.8992 98.5298 93.9856 98.1823 98.5031 

	

Tabla	1	
	
	

 Sdata PCA Sdata RAW 

K 12 18 24 12 18 24 

ANE 0.2348 0.2311 0.2164 0.2697 0.2287 0.2164 

ENE 0.339 0.3386 0.3401 0.3696 0.3228 0.3214 

E 0.5562 0.5622 0.5547 0.5558 0.5333 0.5299 

MD 0 0 0 0 0 0 

VT 41.6667 50 41.6667 33.3333 58.3333 41.6667 

CR 64.8403 71.6918 73.7154 60.6447 75.2465 80.4716 

CV 9080.798 61.2074 86.0876 136.6446 139.1418 280.8481 

AR 74.3363 81.4159 89.3805 61.9469 77.8761 80.531 

	
	

Tabla	2	
	
	

 Edata PCA Edata RAW 

K 48 72 96 48 72 96 

ANE 0.6454 0.6423 0.6407 0.6489 0.6431 0.643 

ENE 0.646 0.6472 0.6472 0.65 0.6448 0.6452 

E 0.7297 0.7301 0.7301 0.7231 0.7236 0.7239 

MD 1.1799 0.59 0.59 1.7699 1.4749 1.4749 

VT 50.4425 53.6873 56.6372 50.7375 56.0472 55.1622 

CR 83.6883 87.0605 88.9709 83.5334 86.9308 87.7461 

CV 0.8494 0.419 0.7357 1.1037 4.74 0.7361 

VA 96.3945 97.7652 98.5995 95.3516 97.497 97.4374 

	
	

Tabla	3	
	
	

 Rdata PCA Rdata RAW 

K 48 96 156 48 96 156 

ANE 0.6013 0.5966 0.5942 0.6118 0.6052 0.6042 

ENE 0.5939 0.5944 0.5981 0.6106 0.6085 0.609 

E 0.7105 0.7074 0.7051 0.703 0.7038 0.7054 

MD 9.1146 5.9896 3.9062 10.1562 5.4688 4.4271 

VT 42.4479 48.6979 58.0729 57.5521 72.9167 70.0521 

CR 70.5716 78.477 83.2957 69.9022 78.1045 80.0167 

CV 1.0171 0.4343 0.3137 7.9407 0.4375 1.1344 

VA 92.6758 96.8992 98.5298 93.9856 98.1823 98.5031 

	

TABLE 2. K selected CC scores from MC Fdata Raw
and PCA signal evaluate with Fdata

Tabla	1	
	
	

 Sdata PCA Sdata RAW 

K 12 18 24 12 18 24 

ANE 0.2348 0.2311 0.2164 0.2697 0.2287 0.2164 

ENE 0.339 0.3386 0.3401 0.3696 0.3228 0.3214 

E 0.5562 0.5622 0.5547 0.5558 0.5333 0.5299 

MD 0 0 0 0 0 0 

VT 41.6667 50 41.6667 33.3333 58.3333 41.6667 

CR 64.8403 71.6918 73.7154 60.6447 75.2465 80.4716 

CV 9080.798 61.2074 86.0876 136.6446 139.1418 280.8481 

AR 74.3363 81.4159 89.3805 61.9469 77.8761 80.531 

	
	

Tabla	2	
	
	

 Edata PCA Edata RAW 

K 48 72 96 48 72 96 

ANE 0.6454 0.6423 0.6407 0.6489 0.6431 0.643 

ENE 0.646 0.6472 0.6472 0.65 0.6448 0.6452 

E 0.7297 0.7301 0.7301 0.7231 0.7236 0.7239 

MD 1.1799 0.59 0.59 1.7699 1.4749 1.4749 

VT 50.4425 53.6873 56.6372 50.7375 56.0472 55.1622 

CR 83.6883 87.0605 88.9709 83.5334 86.9308 87.7461 

CV 0.8494 0.419 0.7357 1.1037 4.74 0.7361 

VA 96.3945 97.7652 98.5995 95.3516 97.497 97.4374 

	
	

Tabla	3	
	
	

 Rdata PCA Rdata RAW 

K 48 96 156 48 96 156 

ANE 0.6013 0.5966 0.5942 0.6118 0.6052 0.6042 

ENE 0.5939 0.5944 0.5981 0.6106 0.6085 0.609 

E 0.7105 0.7074 0.7051 0.703 0.7038 0.7054 

MD 9.1146 5.9896 3.9062 10.1562 5.4688 4.4271 

VT 42.4479 48.6979 58.0729 57.5521 72.9167 70.0521 

CR 70.5716 78.477 83.2957 69.9022 78.1045 80.0167 

CV 1.0171 0.4343 0.3137 7.9407 0.4375 1.1344 

VA 92.6758 96.8992 98.5298 93.9856 98.1823 98.5031 

	

The use of FFT signals renders better overall scores 
than use of RAW signal in Sdata and Fdata; however, 
this advantage diminishes in Rdata. We speculate that 
this difference can be explained by the mapping pro-
cedures used; further research regarding this matter is 
ecouraged.

Using the CH’s rendered K values, we used both CH 
and FFT to generate the CCs is summarized in Table 4 
and in Figs 4-5. Both methodologies rendered similar 
results, yet PCA rendered better results on parameters 
representing MC distribution; this could be an effect of 
the selection method’s intrinsic redundancy.
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To further this concept, we analized maize data with 
both K-means and FFT implementation, in order to 
both contrast with a differt approach and test the 
interfase. The results are presented in  Fig 6.

FIGURE 4. First two principal component’s distributions of k=11 CC (orange) selected
by CH(a), PCA(b) and RAW (c) in Sdata distribution (blue).

FIGURE 5. First two principal component's dristibutions of k=84 CC (orange) selected
by CH(a) and PCA(b)  in Fdata distribution (blue). 

Thus far, the proposed CC selection method and algo-
rithm appear worthy of further exploration. We are 
aware that two particular fundamental elements 
require immediate attention. First, a better mapping 

a)

b) c)

a) b)
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solution for both genotypic and AT numerical repre-
sentation needs to be determined. Second, the selec-
tion system developed by us is directly based on the 
DM and is prone to high redundancy in some data 
distributions. As discussed earlier, this selection sys-
tem was chosen in order to avoid the problems associ-
ated with hierarchical clustering and further alloca-
tion selections [13, 35]. Both issues should be addressed 
in the near future.

TABLE 4. CCs selected from MC Sdata, Fdata
and Rdata using PCA signals and Core Hunter

compared with respective same data
Tabla	4	

	
	

 Sdata  Fdata Rdata 

 PCA 
CH 

PCA 
CH 

PCA 
CH 

K 12 84 156 

ANE 0.2348 0.2314 0.6407 0.6392 0.5942 0.5952 

ENE 0.339 0.3906 0.6474 0.6386 0.5981 0.6047 

E 0.5562 0.563 0.7304 0.7176 0.7051 0.7017 

MD 0 0 0.59 1.1799 3.9062 5.4688 

VT 41.6667 58.3333 56.6372 66.6667 58.0729 86.7188 

CR 65.6045 76.1001 88.9709 93.0119 83.2957 89.6723 

CV 9080.978 132.6078 0.7357 0.429 0.3137 0.4001 

AR 74.3363 76.9912 98.5995 98.4803 98.5298 99.3852 

	
	

Tabla	5	
	
	

 vs EdataI vs EdataII 

 FdataI MFdata FdataII MFdata 

K 24  

ANE 0.6333 0.6356 0.4049 0.4093 

ENE 0.6413 0.6423 0.4374 0.4351 

E 0.7194 0.7113 0.623 0.5914 

MD 1.7668 2.4735 0 0 

VT 66.0777 33.9223 46.42 64.2857 

CR 89.4908 89.8198 80.677 82.1913 

CV 45.7033 35.6847 21.8658 132.1517 

AR 91.7647 92.7206 97.5904 94.3775 

	

FIGURE 6. First two principal component’s distributions
of k=12 CC (up), k=18 CC (center)  and k=24 CC (bottom); 

selected by FFT (left) and K-means (right) with their 
respective evaluation values. Black dots correspond to the 

complete maize set, while red X represent selected 
elements for CC.

Comprehensive data analysis
To demonstrate thet FFT-based CC selection can 

include and analyse data regardless of its origin, we 
concatenated corresponding signals from FdataI whit 
FdataII as well as RdataI and RdaraIII with RdataII to 
construct Mfdata, MRdataI and MRdataIII. The com-
prehensive sts were used to construct CCs; the sets 
were then compared with both their orginal genotype 
and phenotype MCs. These comparisons are shown in 
Tables 5-8, and their distributions are represented in 
Fig. 7-10.

These comprehensive CCs showed overall better 
scores than genotypic-only CCs when compared with 
genotypic-only data. On the contrary, there was a bet-
ter overall score in phenotypic-only CCs when com-
pared against phenotypic-only data.

In the latter case, it should be kept in mind that com-
prehensive data also consider genotypic data; this 
could explain why better selections are made when 
only phenotypic data are considered because geno-
typic variations may reduce the impact of some phe-
notypic traits in the PCA analysis.

The generation of a DM based on signal comparisons 
originating from mixed data construction enables us 
to explore one of the most interesting applications of 
this algorithm. By mapping genotypic and AT data, 
constructing a single signal with all data avaliable for 
a particular accession is possible. The possibility of 
including genotypic data with phenotypic traits, geo-
graphical locations, climates, habitats, nutritional 
requirements, symbiotic relationships and so forth 
provides an opportunity for determining the best 
information to be included in the selection process in 
order to cope with the particular objectives for which 
that CC is beging selected. This concept, in addition to 
adequate scoring systems, may prove useful in design-
ing tailored CCs that comply with specific research/
breeding objetive.
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TABLE 5. CCs selected from MC FdataI and MC MFdata 
PCA signals and evaluated with FdataI and FdataII

TABLE 6. CCs selected from MC RdataI , MrdataI, RdataIII
and MRdataIII PCA signals and evaluated with RdataI 

Tabla	4	
	
	

 Sdata  Fdata Rdata 

 PCA 
CH 

PCA 
CH 

PCA 
CH 

K 12 84 156 

ANE 0.2348 0.2314 0.6407 0.6392 0.5942 0.5952 

ENE 0.339 0.3906 0.6474 0.6386 0.5981 0.6047 

E 0.5562 0.563 0.7304 0.7176 0.7051 0.7017 

MD 0 0 0.59 1.1799 3.9062 5.4688 

VT 41.6667 58.3333 56.6372 66.6667 58.0729 86.7188 

CR 65.6045 76.1001 88.9709 93.0119 83.2957 89.6723 

CV 9080.978 132.6078 0.7357 0.429 0.3137 0.4001 

AR 74.3363 76.9912 98.5995 98.4803 98.5298 99.3852 

	
	

Tabla	5	
	
	

 vs EdataI vs EdataII 

 FdataI MFdata FdataII MFdata 

K 24  

ANE 0.6333 0.6356 0.4049 0.4093 

ENE 0.6413 0.6423 0.4374 0.4351 

E 0.7194 0.7113 0.623 0.5914 

MD 1.7668 2.4735 0 0 

VT 66.0777 33.9223 46.42 64.2857 

CR 89.4908 89.8198 80.677 82.1913 

CV 45.7033 35.6847 21.8658 132.1517 

AR 91.7647 92.7206 97.5904 94.3775 

	

Tabla	6	
	
	

vs RData 

 RdataI MRdataI RdataIII MRdataIII 

K 24    

ANE 0.6148 0.6156 0.6251 0.6169 

ENE 0.5989 0.6107 0.621 0.6194 

E 0.6962 0.6909 0.6985 0.6934 

MD 8.8542 8.5938 7.2917 6.7708 

VT 52.0833 63.5417 52.0833 53.3854 

CR 80.7367 83.768 81.7278 81.8623 

CV 56.3949 59.6279 45.6875 199.9377 

AR 86.5097 88.144 86.5651 90.7202 

	
	

Tabla	7	
	
	

vs RDataIII 

 RdataI MRdataI RdataIII MRdataIII 

K 24    

ANE 0.6285 0.6276 0.6314 0.623 

ENE 0.6273 0.6294 0.6368 0.6267 

E 0.7036 0.7054 0.7226 0.7056 

MD 8.0729 7.5521 7.2917 10.4167 

VT 52.8646 60.6771 51.5625 46.875 

CR 79.5995 81.0356 79.6809 84.53 

CV 28.3673 56.3689 90.0475 60.7279 

AR 88.9071 88.7705 87.5956 93.0471 

	

TABLE 7. CCs selected from MC RdataI, MRdataI, RdataIII
and MRdataIII PCA signals and evaluated with RdataIII

Tabla	6	
	
	

vs RData 

 RdataI MRdataI RdataIII MRdataIII 

K 24    

ANE 0.6148 0.6156 0.6251 0.6169 

ENE 0.5989 0.6107 0.621 0.6194 

E 0.6962 0.6909 0.6985 0.6934 

MD 8.8542 8.5938 7.2917 6.7708 

VT 52.0833 63.5417 52.0833 53.3854 

CR 80.7367 83.768 81.7278 81.8623 

CV 56.3949 59.6279 45.6875 199.9377 

AR 86.5097 88.144 86.5651 90.7202 

	
	

Tabla	7	
	
	

vs RDataIII 

 RdataI MRdataI RdataIII MRdataIII 

K 24    

ANE 0.6285 0.6276 0.6314 0.623 

ENE 0.6273 0.6294 0.6368 0.6267 

E 0.7036 0.7054 0.7226 0.7056 

MD 8.0729 7.5521 7.2917 10.4167 

VT 52.8646 60.6771 51.5625 46.875 

CR 79.5995 81.0356 79.6809 84.53 

CV 28.3673 56.3689 90.0475 60.7279 

AR 88.9071 88.7705 87.5956 93.0471 

	

TABLE 8. CCs selected from MC FdataI and MC MFdata 
PCA signals and evaluated with FdataI and FdataII

Tabla	8	
	
	

vs RDataII 

 RdataII MRdataI MRdataIII 

K 24   

ANE 0.4594 0.4652 0.4618 

ENE 0.4796 0.4896 0.4742 

E 0.6402 0.6205 0.6169 

MD 0 5.2632 0 

VT 39.4737 42.1053 60.5263 

CR 63.8082 61.8988 68.2437 

CV 3.8262 2.2285 4.1332 

AR 95.4268 98.7805 98.7805 

	

FIGURE 7. First two principal component’s distributions of k=24 CC (orange) selected
by PCA from Fdata(a) and Mdata(b) in FdataI distribution (blue).

a) b)
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FIGURE 8. First two principal component’s distributions of k=24 CC (orange) selected
by PCA from FdataII(a) and Mdata(b) in FdataII.

FIGURE 9. First two principal component’s distributions of k=24 CC (orange) selected
by PCA from RdataIII (a) and MdataIII (b) in RdataI distribution (blue).

FIGURE 10. First two principal component’s distributions of k=24 CC (orange) selected
by PCA from RdataII (a) and MRDataI (b) in RdataII distribution (blue).

a) b)

a) b)

a) b)
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CONCLUSIONS
The use of SPTs in CC selection, as presented in this 

algorithm, enables us to analyse all avaliable data 
comprehensively and from different perspectives. 
Despite its limitations, this signal construction make it 
possible to analyse all  avaliable data regarding each 
accesion in CC selection with good results.

The efficiency of SPTs in CC selection sugests that the 
use of these tools in MC analysis may provide useful 
information not only for CC but also for other purposes.

The implementation of current and other SPTs in 
all-inclusive MC-mapped signals is worth further 
exploration, and we belive that it will be an import-
ant asset to genentic resource management and 
exploitation.
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