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ABSTRACT
This work proposes a method to characterize the respiratory pattern of patients with chronic heart failure (CHF) 
to determine non-periodic breathing (nPB), periodic breathing (PB) and Cheyne-Stokes respiration (CSR) through 
non-linear, symbolic analysis of biological signals. A total of 43 patients were examined for their cardiorespiratory 
profiles, their ECG and respiratory pattern signals were processed, analyzed and studied for parameters that could 
be of potential use in clinical decision making, specifically in patient classification. Patients in the study were char-
acterized through their cardiorespiratory signals, applying joint symbolic dynamics (JSD) analysis to cardiac beat 
and respiratory interval durations. The most statistically significant parameters across all groups were identified 
through a Kruskal-Wallis two tailed test (α = 0.05) and a linear discriminant analysis (LDA) classification method 
based on such parameters was developed. The best result achieved with this classification method uses 10 features 
to discriminate patients with a 97.67% Accuracy (Acc). The best features to discriminate among groups are related 
to cardiorespiratory interaction rather than just respiration patterns alone. Results further support the idea that 
abnormal breathing patterns derive from physiological abnormalities in chronic heart failure.
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RESUMEN
El trabajo propone un método para identificar el patrón respiratorio de pacientes con insuficiencia cardiaca cró-
nica (CHF) con la finalidad de determinar respiración no periódica (NPB), respiración periódica (PB) y respiración 
de Cheyne-Stokes (CSR) a través de análisis simbólico no lineal de señales biológicas. Se examinaron los perfiles 
cardiorrespiratorios de 43 pacientes; sus señales de ECG y patrón respiratorio fueron procesados, analizados y es-
tudiados en busca de parámetros que pudieran ser de utilidad, específicamente en la clasificación de pacientes. 
Estos pacientes se caracterizaron por medio de sus señales cardiorrespiratorias, aplicando un análisis de dinámica 
simbólica de conjuntos al ritmo cardíaco y a la duración de los intervalos respiratorios. Los parámetros de mayor 
significancia estadística entre todos los grupos se identificaron a través de una prueba Kruskal–Wallis de dos colas (α 
= 0,05) y mediante un método de clasificación por análisis discriminante lineal (LDA). El mejor resultado consegui-
do con este método utiliza 10 características para discriminar a los pacientes con una precisión de 97,67% (Acc). Las 
características para discriminar entre grupos estuvieron relacionados con la interacción cardiorrespiratoria más que 
con solo los patrones de respiración, respaldando así la idea de que los patrones de respiración anormales derivan 
de anomalías fisiológicas presentes en la insuficiencia cardíaca crónica.

PALABRAS CLAVE: Respiración de Cheyne-Stokes, Patrón respiratorio, dinámica conjunta de símbolos, LDA.
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INTRODUCTION
 Periodic breathing (PB) is a breathing abnormality 

associated with various oscillatory forms character-
ized by rises and falls in ventilation, and Cheyne-
Stokes respiration (CSR) is a more severe form of a PB 
pattern in which apneas and hypopneas alternate with 
repetitive gradual increases and subsequent gradual 
decreases in ventilation. Cheyne-Stokes respiration is 
one of several types of unusual breathing with recur-
rent apneas (dysrhythmias). This abnormal pattern of 
breathing can be seen in patients with hyponatremia, 
traumatic brain injuries and brain tumors [1]. 

PB has a prevalence as high as 70% in congestive heart 
failure (CHF) patients [2], and is associated with increased 
mortality [3], especially in CSR patients. Clinical studies 
show that elderly patients often have an altered breath-
ing pattern, with PB and CSR, coinciding simultane-
ously with the presence or absence of CHF.

CSR is present in up to 40% of patients with CHF and 
several studies have shown an increased mortality in 
patients with both conditions [4-6]. Based upon small 
case series, patients with congestive heart failure and 
Cheyne-Stokes respiration have a significantly greater 
mortality [6, 7], particularly if present during wakeful-
ness [8] than those without Cheyne-Stokes respiration.

An effective respiratory pattern classification method 
as a clinical decision tool could provide patients under-
going treatment with a benefit in prognostic outcome 
and provide us with better tools to help patient recovery. 

Efforts to characterize breathing patterns and classify 
patients using biological signals, mainly ECG and breath-
ing rate, have already been developed using traditional 
time-domain analysis techniques. Garde et al [9] pro-
posed two highly effective methods for distinguishing 
healthy patients from those with abnormal breathing 
patterns using both linear and non-linear classifiers with 
an accuracy level of 93% and 100% respectively. Another 

method to discern obstructive sleep apnea (OSA) from 
Cheyne-Stokes respiration (CSR) using frequency domain 
analysis from overnight electrocardiography (ECG) was 
described by Suhas, Vijendra, Burk, Lucas and Behbehani 
[10] yielding an 87.5% sensitivity and a specificity of 
75%. Neural networks classifiers have also been applied 
to the detection of irregular breathing patterns [11].

While traditional methods might prove useful in patient 
classification, the characterizations of the cardiorespira-
tory interactions of the patients might help us better 
understand the mechanisms of respiratory regulation and 
the effect of cardiac regulation on abnormal breathing 
patterns. To better examine these interactions and their 
effect on the status of the patients a joint symbolic 
dynamics (JSD) analysis was applied to the cardiac (ECG) 
and respiratory (RESP) signals of the patients in this study.

The main idea behind the concept of JSD is the elimi-
nation of detailed information in order to keep the 
robust properties of the dynamics by a coarse graining 
of the measurement [12, 13].

After patients’ cardiorespiratory profile characteriza-
tion, a classification model based on statistical analysis 
was designed to discriminate between study groups. 

METHODOLOGY
The cardiorespiratory profiles (electrocardiographic 

and respiratory flow signal) of 45 elderly patients (age 
71+) with congestive heart failure were recorded for 15 
minutes under no stress at the Departments of 
Intensive Care Unit at the Santa Creu i Sant Pau 
Hospital, Barcelona, Spain, and the Getafe Hospital, 
Getafe, Spain. The patients of the study (age 71-93) 
gave their informed consent to participate in the study 
and the recording was done according to protocols 
established by local ethics committees. Using clinical 
criteria based on the patients’ respiratory profile and 
medical observation, patients included in this study 
were classified into one of three study groups: 
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› Group 0,  20 patients (9 male, 11 female, aged 81.7 
± 8 years) that presented a non-periodic breathing 
pattern (nPB).

› Group 1, 17 patients (9 male, 8 female, aged 81.5 
± 7 years) that presented a periodic breathing pat-
tern (PB),

› Group 2, 6 patients (2 male, 4 female, aged 81.3 ± 
7 years) with a Cheyne-Stokes breathing pattern 
(CSR).

Patients with PB could or could not exhibit this 
behavior during the recordings.

Of the total 45 patients, two (patients ‘p0027’ and 
‘p0042’) were removed from the study due to high 
noise in the signal recordings. 

Both signals, ECG and respiratory flow signals (ECG 
and RESP respectively), were recorded synchronously 
with a sampling frequency of 250 Hz for 15 min. The 
patients’ ECG and respiratory flow signals were pre-
processed to remove signal recording noise. Some of 
the signals showed some small drift and a simple cor-
rection algorithm based on drift compensation was 
used on the signals to minimize these deviations.

Signal processing and time
series extraction

The cardiorespiratory signals for all 43 patients of the 
study were processed and analyzed using MATLAB® 
(v R2015) signal and data analysis software. Custom 
written computer software developed under MATLAB® 
was used to analyze both signals in order to extract the 
time series using an algorithm based on wavelet trans-
form and analysis [14]. 

The original signals of the study were decomposed 
into a lower frequency signal using a discrete wavelet 
transform in order to remove noise and reduce signal 

details while preserving overall signal pattern to allow 
features to be more easily extracted. A biorthogonal 
Daubechies 4 (db4) wavelet was selected for signal 
decomposition.

The decomposed signals were automatically 
inspected for QRS complexes. By detecting these peaks 
in the down-sampled signal, the location of these 
peaks in the reconstructed signal had to be cross vali-
dated in the original ECG wave. The signal was then 
visually inspected and edited, if necessary. Ectopic 
beats were determined, removed and interpolated 
using an algorithm based on local variance estimation. 

Respiratory flow signal was examined using an algo-
rithm based on the zero-crossing of the respiratory 
flow signal. The respiratory flow signal was visually 
inspected and edited, if necessary. 

After R peak and breathing episode detection on the 
original signals (ECG, RESP), a time series vector was 
then created from the intervals between R peaks and 
breathing episodes, as follows:

Where RR(k1) and Ttot(k2) represent the time series 
of the ECG and respiratory signals, respectively; and j1 
and j2 represent the location of an R peak and a breath-
ing episode in the original ECG and RESP signals, 
respectively.

Since heart rate and breathing rate greatly vary in 
both frequency and variability, most of the time series 
values do not correlate and both time series values had 
to be synchronized in order to correctly apply joint 
symbolic dynamics [12]. An interpolation of the original 
time series was made using an estimation method 
based on local values at a 250 Hz frequency (the sam-
pling frequency for the original ECG and RESP signals). 
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FIGURE 1. Original ECG and RESP signals after feature detection analysis. R peaks are shown in red diamonds above the ECG 
signal and breathing episodes are shown in red squares above the RESP signal.

This new RR(n) and Ttot(n) time series allows us to com-
pare and apply JSD to study the interactions between 
the two signals and their effect on the patient’s status.

A new bivariate vector x is obtained from the sampling 
of each value of the resampled time series, as follows:

From this synchronized sampled time series, x, a sym-
bol sequence vector, named s, is obtained to look for 
symbols that might help us differentiate study groups.   

Joint symbolic dynamics: 
feature extraction

After signal processing and analysis, the bivariate 
sampling vector for the time series was then trans-
formed into a series of discrete symbols in order to 
extract information about the cardiorespiratory sys-
tem and their relation to the patients’ respiratory pat-
tern and clinical classification.

FIGURE 2. RR (n) and Ttot (n) time series calculated from the synchronized sampling of the interpolated original time series RR 
(k1) and Ttot (k2). Sampled values are shown in blue squares. Sampling frequency 1-Hz.
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FIGURE 3. Process of joint symbolic dynamics (JSD). 
Transformation of the bivariate sample vector x (ECG = RR 

intervals [s]; RESP = respiratory episode interval [s]) into the 
bivariate symbol vector s (0: equal, decreasing or increasing 
values below 50% of the local standard deviation; 1: increas-

ing values above 50% of the local standard deviation). 
Words share 2 symbols (overlapping value τ = +2).

 

1. Fig. 3. Process of joint symbolic dynamics (JSD). Transformation of the bivariate 
sample vector x (ECG = RR intervals [s]; RESP = respiratory episode interval [s]) into 
the bivariate symbol vector s (0: equal, decreasing or increasing values below 50% of 
the local standard deviation; 1: increasing values above 50% of the local standard 
deviation). Words share 2 symbols (overlapping value τ = +2). 

 

To compare word-type distributions between data 
sets of different length, the sum of all counted words 
for each group was normalized to 1. Word probability 
occurrence, p (Wc,r), was calculated separately for each 
symbol overlapping value (τ =0, +1, +2). The sum of 
each row in Wraw is computed as p (Wc) and represents 
the occurrence probability of each word from the car-
diac time series, as follows:

From the bivariate vector x (c,r), which represents the 
sample vector of the cardiac (c) time series RR (n) and 
the respiratory (r) time series Ttot(n), a bivariate symbol 
vector, s, is obtained, as shown in Eq. (7). This vector s  
obtained by transforming x  using a symbol alphabet. 
When the x time series vector showed an increase 
above 50% of the local standard deviation (measured 
in a 5 sample window), a 1 symbol was used to charac-
terize an increase in the s time series vector. When the 
x time series vector showed a decrease or an increase 
below the 50% of the local standard deviation, a 0 was 
added to the s time series vector.

(measured in a 5 sample window), a 1 symbol 
was used to characterize an increase in the s time 
series vector. When the x time series vector 
showed a decrease or an increase below the 50% 
of the local standard deviation, a 0 was added to 
the s time series vector. 
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respiratory word types), which ranges from word 
type [000,000]T to [111,111]T. The method for 
obtaining the occurrence matrix W and the 
symbol vector s from the time series x is 
illustrated in Figure 2. 
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TABLE I. Words with significant probability occurrence 
across all three groups at an overlapping level τ = +2.
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Words with significant probability occurrence across all three groups at 
an overlapping level τ = +2 
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  TABLE  II 
 

Best feature subset for patient group discrimination using LDA 
 

 Features p   Words 
 f1 0.0052   pn(wc000,r 000) 
 f10 0.0100   pn(wc001,r 001) 
 f12 0.0175   pn(wc011,r 001) 
 f18 0.0384   pn(wc001,r 010) 
 f26 0.0098   pn(wc001,r 011) 
 f51 0.0089   pn(wc010,r 110) 
 f53 0.0061   pn(wc100,r 110) 
 f54 0.0364   pn(wc101,r 110) 
 f55 0.0070   pn(wc110,r 110) 
 f85 0.0177   Σ(Pn(wc)) <0.03 
  

 
  
 

 
 
 

Classification models were validated using a leave-
one-out (LOO) cross-validation method. The best dis-
criminant model was constructed using a stepwise 
feature selection to optimize accuracy from the initial 
model based on significant symbols from the Kruskal-
Wallis test (Table 2). This model used 10 features to 
discriminate among groups and yielded a 97.67% 
accuracy in patient classification. 9 of the 10 features 
selected are related to cardiorespiratory interaction, 
while the f85 parameter is the number of cardiac 
words (wc) whose probability of occurrence p(wc) is 
lower than 0.03.

TABLE II. Best feature subset for patient group 
discrimination using LDA

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  TABLE  I 
 

Words with significant probability occurrence across all three groups at 
an overlapping level τ = +2 
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 0.0046 pn(wc000,r 000) 
0.0092 pn(wc001,r 010) 
0.0094 pn(wc111,r 111) 
0.0175 pn(wc101,r 110) 
0.0344 pn(wc100,r 110) 
0.0445 pn(wc010,r 110) 

C
ar

di
ac

 
w

or
ds

 
(W

c) 
 0.0031 pn(wc 111) 

0.0154 pn(wc 110) 
0.0159 pn(wc 011) 

 
 

  TABLE  II 
 

Best feature subset for patient group discrimination using LDA 
 

 Features p   Words 
 f1 0.0052   pn(wc000,r 000) 
 f10 0.0100   pn(wc001,r 001) 
 f12 0.0175   pn(wc011,r 001) 
 f18 0.0384   pn(wc001,r 010) 
 f26 0.0098   pn(wc001,r 011) 
 f51 0.0089   pn(wc010,r 110) 
 f53 0.0061   pn(wc100,r 110) 
 f54 0.0364   pn(wc101,r 110) 
 f55 0.0070   pn(wc110,r 110) 
 f85 0.0177   Σ(Pn(wc)) <0.03 
  

 
  
 

 
 
 

across all groups to look for features that might prove 
valuable in patient classification. Individual words 
were then compared across groups to find those that 
were of statistical significance.

A Kruskal-Wallis test was performed for each individ-
ual parameter for parameter comparison across all 
groups. For parameter comparison between paired 
groups a simple Mann-Whitney U test was performed 
for each of the groups against the others.

Considering the problem of multiple testing, the nec-
essary local significance level of a single parameter 
from an observed 64 dimensional parameter space 
had to fulfill Bonferroni’s inequality to guarantee a 
global significance.

Feature selection
Different discrimination functions were constructed 

using the most significant parameters from the sym-
bolic analysis of the signals. The initial LDA model was 
created using the most prominent features from the 
statistical analysis yielding a 93.02% accuracy in 
patient classification. Word occurrence probability sig-
nificance across groups was used to select words for 
the initial LDA classification model. Each parameter 
was selected only if it was present in at least two of 
three overlapping value distributions in order to reduce 
the possibility of overlapping dependent symbols.

The best features to discriminate among groups are 
related to cardiorespiratory interactions or cardiac 
words alone (Table 1). While the cardiac word for 
increasing intervals (Wc = ‘111’) shows one of the high-
est probability significance across groups using a 
Kruskal-Wallis test, the most common cardiac words 
among the selected features for the classification mod-
els are those that represent constantly alternating 
intervals and further support the importance that car-
diac variability plays in the poor respiratory regulation 
in patients with periodic breathing.
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CONCLUSIONS
In conclusion, by applying JSD we were able to provide 

detailed information about short-term regulatory mech-
anisms of respiratory patterns. From the results we can 
observe that the most relevant features selected priori-
tize cardiorespiratory variability rather than cardiac or 
respiratory variability alone, which supports the idea 
that abnormal breathing patterns originate from physi-
ological abnormalities in chronic heart failure [18]. An 
adequate control of the cardiac status of a patient could 
prove a beneficial influence in CSR with improved sleep 
quality and quality of life for patients [19], and might 
help prevent the development of CSR in patients with 
normal breathing patterns.
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DISCUSSION
JSD analysis revealed significant cardiorespiratory 

coupling patterns across the 3 study groups (non-peri-
odic breathing, periodic breathing and Cheyne-Stokes 
breathing). Of these parameters, only one (pn(wc 111) = 
0.0031) fulfilled a conservative Bonferroni-Holm 
adjustment, which suggests a true significance across 
patient groups. This parameter proved a good discrim-
inant between nPB and the other groups (PB and CSR), 
but showed poor discrimination power between PB 
and CSR. Individual cardiorespiratory coupling words 
including the respiratory word wr110 showed good 
discrimination power between PB and CSR groups, 
particularly wc 100, r110 and wc010 r 110.

The coupling of other physiologically relevant signals 
could potentially improve not only the classification 
model but also provide more information regarding 
the mechanisms involved in the poor respiratory regu-
lation in PB and CSR patients. Patients with congestive 
heart failure and Cheyne-Stokes respiration have 
increased pulmonary vascular pressures and a JSD 
analysis using a blood pressure signal could poten-
tially improve patient characterization. Patient char-
acterization using JSD coupling ECG and blood pres-
sure signals have already been developed providing 
good results [15-17].
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