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ABSTRACT
This paper presents an application developed on the BCI2000 platform
which reduces the average spelling time per symbol on the Donchin
speller. The motivation was to reduce the compromise between spelling
rate and spelling accuracy due to the large amount of responses required
in order to perform coherent average techniques. The methodology
was made under a Bayesian approach which allows calculation of each
target’s class posterior probability. This result indicates the probability
of each response of belonging to the infrequent class. When there is
enough evidence to make a decision the system stops the stimulation
process and moves on with the next symbol, otherwise it continues
stimulating the user until it finds the selected letter. The average
spelling rate, after using the proposed methodology with 14 healthy
users and a maximum number of 5 stimulation sequences, was of 6.1 ±
0.63 char/min, compared to a constant rate of 3.93 char/min with the
standard system.

Keywords: brain-computer interface, oddball paradigm, Bayesian
inference.
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RESUMEN

Este trabajo presenta una aplicación desarrollada sobre la plataforma
BCI2000 que disminuye el tiempo promedio de selección de los símbolos
del deletreador de Donchin. La motivación consistió en reducir el
compromiso entre la taza de deletreo y la precisión correspondiente,
la cual surge como consecuencia de la gran cantidad de respuestas
necesarias para realizar técnicas de promediación coherente. La
metodología propuesta se basa en un enfoque Bayesiano que permite
calcular la probabilidad posterior asociada con la clasificación de
cada objetivo, resultado que indica la evidencia que presentan las
respuestas de pertenecer a la clase infrecuente. Cuando existe evidencia
suficiente para tomar una decisión, el sistema detiene el proceso de
estimulación y continúa con el siguiente símbolo, de lo contrario
permanece estimulando al usuario hasta conseguir identificar la letra
seleccionada. Después de utilizar la metodología propuesta sobre los
registros de 14 usuarios sanos con un número máximo de 5 series de
estimulación, el tiempo promedio de deletreo reportado es de 6.1 ±
0.63 letras/min, el cual es comparado con una taza constante de 3.93
letras/min obtenido con un sistema convencional.

Palabras clave: interfaz cerebro-computadora, paradigma de evento
raro, inferencia Bayesiana.

INTRODUCTION

The brain-computer interface (BCI) known as
Donchin’s speller [1], allows communicating text
using random intensifications of each row and
column of a character matrix to evoke EEG
event-related potentials (ERPs) [2]. The user
focuses attention on the cell containing the letter
to be communicated while the rows and the
columns of the matrix are intensified, as shown in
figure 1. This application is based on an oddball
paradigm; the row and the column containing
the letter to be communicated are “rare” items
which elicit the P300 component and, therefore,
can be determined.

This application has the drawback of
requiring long periods of time before obtaining
a reliable result. One of the reasons behind this
inconvenience is that the signal amplitude is too
small in comparison with the EEG background

2	
  
	
  

	
  

system stops the stimulation process and moves on with the next symbol, otherwise it continues 
stimulating the user until it finds the selected letter. The average spelling rate, after using the proposed 
methodology with 14 healthy users and a maximum number of 5 stimulation sequences, was of 6.1 ± 0.63 
char/min, compared to a constant rate of 3.93 char/min with the standard system. 	
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I. Introduction  
 
The brain-computer interface (BCI) known as Donchin´s speller [1], allows communicating text using random 
intensifications of each row and column of a character matrix to evoke EEG event-related potentials (ERPs) [2]. 
The user focuses attention on the cell containing the letter to be communicated while the rows and the columns of 
the matrix are intensified, as shown in figure 1. This application is based on an oddball paradigm; the row and the 
column containing the letter to be communicated are “rare” items which elicit the P300 component and, therefore, 
can be determined. 
 
 

 
 
 

 This application has the drawback of requiring long periods of time before obtaining a reliable result. One 
of the reasons behind this inconvenience is that the signal amplitude is too small in comparison with the EEG 
background activity, which hinders the detection of event-related responses. A way to improve the signal to noise 
ratio is using coherent average techniques [3]; which enhance common response features and reduce noise, as 
shown in figure 2, where the averaging process results over 1; 3; 5 and 15 EEG signal segments are illustrated. 
 

Figure 1. Symbol matrix used in the 
stimulation process. (This image was taken 
from [1]). 

Figure 1. Symbol matrix used in the stimulation
process. (This image was taken from [1]).

activity, which hinders the detection of event-
related responses. A way to improve the signal
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As can be inferred, the more responses available for averaging the better results are obtained; nevertheless, this 
approach leads to a slow system performance due to the several stimulation sequences that are required. From 
this fact it can be seen that a compromise between spelling rate and spelling accuracy exists. In most of the cases 
BCI operators decide to present several stimulation sequences (i.e., one intensification cycle of the entire matrix, 
six row and six column intensifications) so as to ensure accuracy, nevertheless many of these sequences may 
result unnecessary because from the third or second, sometimes even from the first, the system has enough 
information to identify the corresponding target. This fact reveals how inadequate it is to consider the number of 
stimulation sequences as a static parameter assigning always the same amount to select the different targets. For 
conventional systems this parameter which will be, in the present text, denoted by Ñ must be established by the 
operator during their configuration 
 Some of these systems, as the P300_Speller®, operate using a linear discriminant which defines a 
hyperplane dividing the feature space into two regions. Each surface side is related to one of the classes (i.e., 
infrequent and frequent class), so that the classification label of each data can be determined from its relative 
position with respect to the stated hyperplane; which is determined by the calculated distance sign. Thus, after 
every stimulation sequence, the relative distances between the mapped EEG epochs to the classification space 
and the corresponding surface is computed; and once the Ñ sequences have been completed, the sum of the Ñ 
corresponding results is calculated, so that the information generated for each target from all stimulation 
sequences get grouped into one single value. The sum results related to the six matrix rows are compared in 
order to select the target showing the maximum infrequent-signed value; which indicates that the corresponding 
target caused on average the most alike infrequent responses, and therefore can be selected; the same 
comparison is made over the sum results related to the six matrix columns. In fact, this is how these methods 
perform coherent averaging, not over the signal segments but over the relative distances between the mapped 
EEG epochs to the classification space and the corresponding hyperplane.  
 Figure 3 shows a diagram of the described above methodology, observe that in order to select any matrix 
character it is necessary to wait until the Ñ stimulation sequences have finished.  
 

Figure 2. Each plot 
represents the 
results of the 
coherent averaging 
over 1, 3, 5 and 15 
signal segments for 
infrequent (dark 
line) and frequent 
(tenuous line) 
responses. Observe 
that as the number 
of averaged 
segments 
increases, the P300 
complex in the dark 
plots gets enhancer.  

	
  

Figure 2. Each plot represents the results of the coherent averaging over 1, 3, 5 and 15 signal segments
for infrequent (dark line) and frequent (tenuous line) responses. Observe that as the number of averaged
segments increases, the P300 complex in the dark plots gets enhancer.

to noise ratio is using coherent average
techniques [3]; which enhance common response
features and reduce noise, as shown in figure 2,
where the averaging process results over 1; 3; 5
and 15 EEG signal segments are illustrated.

As can be inferred, the more responses
available for averaging the better results are
obtained; nevertheless, this approach leads to
a slow system performance due to the several
stimulation sequences that are required. From
this fact it can be seen that a compromise
between spelling rate and spelling accuracy
exists. In most of the cases BCI operators decide
to present several stimulation sequences (i.e.,
one intensification cycle of the entire matrix,
six row and six column intensifications) so as
to ensure accuracy, nevertheless many of these
sequences may result unnecessary because from
the third or second, sometimes even from the
first, the system has enough information to
identify the corresponding target. This fact
reveals how inadequate it is to consider the
number of stimulation sequences as a static
parameter assigning always the same amount to

select the different targets. For conventional
systems this parameter which will be, in the
present text, denoted by Ñ must be established
by the operator during their configuration.

Some of these systems, as the
P300_Speller R©, operate using a linear
discriminant which defines a hyperplane dividing
the feature space into two regions. Each
surface side is related to one of the classes
(i.e., infrequent and frequent class), so that
the classification label of each data can be
determined from its relative position with
respect to the stated hyperplane; which is
determined by the calculated distance sign.
Thus, after every stimulation sequence, the
relative distances between the mapped EEG
epochs to the classification space and the
corresponding surface is computed; and once
the Ñ sequences have been completed, the sum
of the Ñ corresponding results is calculated, so
that the information generated for each target
from all stimulation sequences get grouped into
one single value. The sum results related to the
six matrix rows are compared in order to select
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 In contrast, the proposed methodology adjusts itself to the data characteristics and presents as many 
stimulation sequences as necessary to select each matrix symbol; therefore, under this scheme, the Ñ parameter 
is not considered. This approach determines, based on the evidence found at the end of each stimulation 
sequence, whether the system must continue the stimulation process, or whether it can be stopped due to the fact 
that the user’s chosen symbol has been already identified. In order to evaluate this evidence a second 
classification stage is proposed; which is trained over the cumulative distance vectors constructed from the first 
linear discriminant results. These vectors are generated at the end of the nth stimulation sequence by setting the 
sum of the first n target-related directed distances at the nth element position, for n=1, 2,…, N; where N denotes 
the maximum number of stimulation sequences the system emits in case it cannot make a decision before; and it 
corresponds to a new parameter which must be established during configuration.  
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Figure 3. P300_Speller R© operating diagram. The Ñ parameter indicates the number of stimulation
sequences the system emits to select every matrix character.

the target showing the maximum infrequent-
signed value; which indicates that the
corresponding target caused on average the most
alike infrequent responses, and therefore can be
selected; the same comparison is made over the
sum results related to the six matrix columns. In
fact, this is how these methods perform coherent
averaging, not over the signal segments but
over the relative distances between the mapped
EEG epochs to the classification space and the
corresponding hyperplane.

Figure 3 shows a diagram of the described
above methodology, observe that in order to
select any matrix character it is necessary to wait
until the Ñ stimulation sequences have finished.

In contrast, the proposed methodology
adjusts itself to the data characteristics
and presents as many stimulation sequences
as necessary to select each matrix symbol;
therefore, under this scheme, the Ñ parameter
is not considered. This approach determines,
based on the evidence found at the end of each
stimulation sequence, whether the system must
continue the stimulation process, or whether

it can be stopped due to the fact that the
user’s chosen symbol has been already identified.
In order to evaluate this evidence a second
classification stage is proposed; which is trained
over the cumulative distance vectors constructed
from the first linear discriminant results. These
vectors are generated at the end of the nth
stimulation sequence by setting the sum of the
first n target-related directed distances at the
nth element position, for n=1, 2,. . . , N; where
N denotes the maximum number of stimulation
sequences the system emits in case it cannot
make a decision before; and it corresponds to a
new parameter which must be established during
configuration.

METHODOLOGY

A. Classification Model

The method described below is based on a
two-level classification model which estimates
after every stimulation sequence the evidence
related to each of the twelve matrix targets of
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belonging to the infrequent class; if there is
enough information to identify the corresponding
symbol, the stimulation process stops and the
chosen character is displayed.

The first classification stage consists of a
linear discriminant trained on temporal EEG
features which defines a hyperplane dividing
the feature space into two classes. Feature
extraction as well as estimation of the hyperplane
which best separates the two classes, is carried
out by using a feature selection method which
determines from a labeled training dataset
which channels and which EEG signal samples
give the most information to differentiate both
memberships.

In order to evaluate the evidence found
at the end of each stimulation sequence a
second classification stage is proposed; which is
trained over a cumulative distance vector dataset
constructed from the first classification stage
results. These vectors are generated at the end of
the nth stimulation sequence by setting the sum
of the first n target-related directed distances
(i.e., the relative distances between the mapped
EEG epochs to the classification space and the
hyperplane defined by the first classification
stage) at the nth element position, for n=1,
2,. . . , N; where N denotes the maximum number
of stimulation sequences the system emits in
case it cannot make a decision before; and it
corresponds to a new parameter which must be
established during configuration.

The second classification stage consists
then of N linear discriminants which classify
the evidence found until the nth stimulation
sequence, for n=1, 2,. . . ,N; each of these
discriminants represents a classification space
where a hyperplane separating the corresponding
cumulative distance vectors is defined, so that
the evidence showed by every unseen data of
belonging to the infrequent class is evaluated

through the relative distance between the
mapped vector to the classification space and
the corresponding classification surface. As it
was mentioned, the sign of the resulting directed
distances indicates the side of the hyperplane
on which the data fall, and the absolute value
provides information about how likely the data is
to belong to the specified class; the farther away
a point is from the hyperplane the more reliable
the classification result. Following this idea,
the resulting directed distances are mapped onto
probability values, which allow making decisions
based on the evidence related to the specific
data position in the classification space. To this
end, a logistic sigmoid function is fitted to each
of the N resulting directed distance datasets;
which maps the whole real axis into a finite
interval between 0 and 1 allowing, after every
stimulation sequence, calculation of each target-
related posterior probability of belonging to the
infrequent class.

The posterior probability results estimated
after each stimulation sequence are evaluated in
order to determine whether the user?s chosen
symbol can be identified; if this is the case,
the system stops the stimulation process and
displays the corresponding character; otherwise
the process continues until the character can
be determined or when de maximum number
of stimulation sequences permitted has been
exceeded (i.e., the N stimulation sequences have
been completed); if this occurs the system
selects the matrix symbol whose row and column
position is determined by the targets showing the
maximum posterior probability values.

Figure 4 shows a diagram of the proposed
methodology, observe that in order to select
each matrix symbol the system must determine
the number of stimulation sequences required; if
it cannot make a decision based on the found
evidence it will present a maximum of N.
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Figure 4. Proposed system’s operating diagram.
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Table 1. The first two columns show, respectively, the words spelled by one of the users and the
corresponding number of stimulation sequences; the last two columns present the data partition from
which the training and validation datasets are obtained. All subscripts correspond to an identification
number for each character.

Words # Stimulation Validation Training

Sequences First Classification stage Second classification stage

C1A2L3O4R5 15 L3C6O11I16C22 E50S51Q52U53E54M55A56S57 G43A44L45L46E47T48A49

C6A7R8I9N10O11 15 O30D32L34C35B40 A58L59E60G61R62I63A64

S12U13S14H15I16 15 C1A2O4R5A7

S17U18S19H20I21 15 R8I9N10S12U13

C22E23N24A25R26 15 S14H15S17U18S19

C27O28L29O30R31 15 H20I21E23N24A25

D32U33L34C35E36S37 15 R26C27O28L29R31

N38U39B40E41S42 6 U33E36S37N38U39

G43A44L45L46E47T48A49 4 E41S42

E50S51Q52U53E54M55A56S57 3

A58L59E60G61R62I63A64 3

Table 1: The first two columns show, respectively, the words spelled by one of the users and the corresponding number of
stimulation sequences; the last two columns present the data partition from which the training and validation datasets are
obtained. All subscripts correspond to an identification number for each character.

1

B. Subjects

Data were taken from a public domain database
[4] which stores records from several users who
have participated in various spelling sessions
with a system built on the BCI2000 platform
[5]; the users were healthy students with an
age range of 21 to 25 years. Each session
consists of a spelled word with a number of
stimulation sequences varying from 1 up to 15.
A whole stimulation sequence consists of twelve
stimuli: six row-intensifications and six column-
intensifications of the symbol matrix. Each
target is highlighted for 62.5 ms with an inter-
stimuli interval of 125 ms; the pause between
stimulation sequences was 4000 ms.

Table 1 presents the spelled words by one
of the users; each one corresponds to a spelling
session with a number of stimulation sequences
varying from 3 to 15. For every character a
subscript has been added in order to track it
along the partition, which defines the training
and validation datasets. The first four words
were common to all users, that is, they were
asked to participate in four directed spelling
sessions in which they have to spell nothing
but these words attending to 15 stimulation
sequences for each one of the characters. Once
each user had finished these directed spelling
sessions, she or he was free to decide the words to

spell in the remaining ones, in which the operator
decided the number of stimulation sequences the
system emitted.

The first stage classification training requires
data consisting of a single response, regardless of
stimulation sequence in which it was recorded;
in the other hand second stage classification
training as well as the validation process need
data shaped by N successive responses. Thus,
all responses of words spelled with less than N
stimulation sequences are put together in one
group in order to train the first classification
stage. The leftover data are divided randomly
into two groups: 80% is used to train the second
classification stage and the other 20% to validate
the system performance. All the remaining
responses of data recorded with more than N
stimulation sequences belonging to the second
stage training dataset are added to the first
classification stage training dataset.

In the subsequent sections an example of a
system built with a value of N=4 using table
1 data is presented; this partition consists of
a randomly generated instance which satisfies
the constraint imposed by the corresponding N-
value.

EEG signals were recorded using 10
electrodes positioned on the user’s scalp
according to the 10-20 system, as shown in
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 EEG signals were recorded using 10 electrodes positioned on the user´s scalp according to the 10-20 
system, as shown in figure 5. Each electrode was connected to a 16-channel differential g.tec® gUSBamp 
amplifier (Graz, Austria) in reference to the right earlobe, with the ground placed on the right mastoid. From each 
channel a 256 Hz sampled signal is obtained, which is filtered using a 0.1-60 Hz 8th order passband Chebyshev 
filter and a 60 Hz 4th order Chebyshev notch filter.  
 The stimulus responses are obtained from these signals using a window size of approximately 600 ms 
(154 samples); thus each single response consists of a 154x10 array storing the signal segment generated by 
each of the ten channels starting at the beginning of the corresponding intensification; and N-responses data 
comprised in the second classification stage training dataset consist of a 154x10xN array.  
 It is worth mentioning that the number of first classification stage training data sum a total of 4332 single 
responses, of which 540 consist of the responses generated from the two table-1-latest words “ESQUEMAS” and 
“ALEGRIA” which represent 15 letters spelled with 3 stimulation sequences for each of the 12 matrix targets 
(15*3*12=540). Furthermore, the 2 remaining responses (i.e., 6-N=6-4=2) of each of the 4 randomly selected 
letters from the word “NUBES” add 96 more single responses (4*2*12=96) and the 11 remaining responses (i.e., 
15-N=15-4=11) of each of the 28 randomly selected letters from words spelled with 15 stimulation sequences add 
3696 more (28*11*12=3696). Note that 3610 of these 4332 single responses (540+96+3696=4332) are frequent 
type and the remaining 722 are infrequent type. 
 The number of second classification stage training data sum a total of 468 N-shaped-responses, of which 
84 correspond to the data generated from table-1-word “GALLETA”, which consists of 7 letters multiplied by each 
of the 12 matrix targets (7*12=84) and, the remaining 384 data, correspond to the 32 randomly selected letters 
(32*12=384). 
 The validation dataset as can be seen from table 1 consists of 10 randomly selected letters which 
represents, approximately, the 20% of the total spelled characters. The remaining data of letters spelled with more 
than N stimulation sequences are just discarded, so that the validation dataset consists of 120 N-shaped 
responses (10*12=120).  

 

 

Figure 5. Diagram of the electrode subset 
configuration during signal acquisition, according 
to the 10-20 system. 

	
  

Figure 5. Diagram of the electrode subset
configuration during signal acquisition,
according to the 10-20 system.

Figure 5. Each electrode was connected to a 16-
channel differential g.tec R© gUSBamp amplifier
(Graz, Austria) in reference to the right earlobe,
with the ground placed on the right mastoid.
From each channel a 256 Hz sampled signal is
obtained, which is filtered using a 0.1-60 Hz 8th
order passband Chebyshev filter and a 60 Hz 4th
order Chebyshev notch filter.

The stimulus responses are obtained
from these signals using a window size of
approximately 600 ms (154 samples); thus each
single response consists of a 154×10 array storing
the signal segment generated by each of the
ten channels starting at the beginning of the
corresponding intensification; and N-responses
data comprised in the second classification stage
training dataset consist of a 154×10×N array.

It is worth mentioning that the number of
first classification stage training data sum a
total of 4332 single responses, of which 540
consist of the responses generated from the
two table-1-latest words “ESQUEMAS” and
“ALEGRIA” which represent 15 letters spelled
with 3 stimulation sequences for each of the
12 matrix targets (15*3*12=540). Furthermore,
the 2 remaining responses (i.e., 6-N=6-4=2)
of each of the 4 randomly selected letters

from the word “NUBES” add 96 more single
responses (4*2*12=96) and the 11 remaining
responses (i.e., 15-N=15-4=11) of each of the
28 randomly selected letters from words spelled
with 15 stimulation sequences add 3696 more
(28*11*12=3696). Note that 3610 of these
4332 single responses (540+96+3696=4332) are
frequent type and the remaining 722 are
infrequent type.

The number of second classification stage
training data sum a total of 468 N-shaped-
responses, of which 84 correspond to the
data generated from table-1-word “GALLETA”,
which consists of 7 letters multiplied by each
of the 12 matrix targets (7*12=84) and, the
remaining 384 data, correspond to the 32
randomly selected letters (32*12=384).

The validation dataset as can be seen from
table 1 consists of 10 randomly selected letters
which represents, approximately, the 20% of
the total spelled characters. The remaining
data of letters spelled with more than N
stimulation sequences are just discarded, so that
the validation dataset consists of 120 N-shaped
responses (10*12=120).

C. First Classification Stage

Consists of a linear discriminant trained
on temporal EEG features which defines a
hyperplane dividing the feature space into two
classes. Feature extraction as well as estimation
of the hyperplane which best separates the
two classes, is carried out by using a feature
selection method. This approach generates four
parameters: a vector containing the channels
whose signals presented the most relevant
information to differentiate data from both
classes; a second vector indicating which EEG
signal samples recorded by the selected channels
give the most information to distinguish both
memberships; a third vector, w, whose elements
are the coefficients of the normal vector to the
hyperplane which best separates the members
from both classes; and a fourth scalar parameter,
w0, which represents the bias of the classification
hyperplane.
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 From these results N new training datasets are constructed, each one containing the corresponding Yi,n 

cumulative distance vectors, for n=1,2,…,N. Each dataset contains representative information of the n-th and the 
previous (n-1) target-related responses, which is used to generate the second classification stage corresponding 
to a bank of N linear discriminants.  
 
C.2. Second Classification Stage: Each one of the N linear discriminants generated in this stage is trained over 
half of the second classification stage training dataset, as the other half will be used to fit the corresponding 
logistic sigmoid functions. Each dataset consists of the first n vector components of the training data, for n=1, 2,..., 
N; over which the same feature selection method as the one mentioned in the first classification stage section is 
performed. The resulting parameters consist of a set of numbers indicating which elements of the cumulative 
distance vectors contained the most relevant information to differentiate data from both classes; a vector, vn, 
which represents the normal vector to the hyperplane which best separates both memberships; and a third scalar 
parameter, v0n, which denotes the bias of the classification surface. This means that from each of the N training 
datasets a classification space is defined; so that, every unseen data classification label can be determined after 
the n-th stimulation sequence by calculating the directed distance, zi,n, between the resultant mapped cumulative 
distance vector to the classification space, , and the corresponding hyperplane in the following terms: 

 

 
 
 
 As it was said, the farther away the mapped vector is from the classification surface the more reliable the 
classification result; under this scheme, in order to map the whole real axis into a finite interval comprising the 

Figure 6. Projections of the cumulative distance vectors for n=1; 2; 3 and 4 over 
the indicated 1-D (n=1) or 2-D (n=2; 3 and 4) subspaces. The dark “+” data 
represent directed distances of infrequent vectors and the tenuous “o” directed 
distances of frequent vectors obtained from the first classification stage. Note 
that as n-value increases data from both classes get more separated.  

	
  

Figure 6. Projections of the cumulative distance vectors for n=1; 2; 3 and 4 over the indicated 1-D
(n=1) or 2-D (n=2; 3 and 4) subspaces. The dark “+” data represent directed distances of infrequent
vectors and the tenuous “o” directed distances of frequent vectors obtained from the first classification
stage. Note that as n-value increases data from both classes get more separated.

C.1. Cumulative Distance Vectors
Construction

After feature extraction, data taken from second
classification stage training dataset are mapped
into the space defined by the first classification
stage. The side of the corresponding hyperplane
where the resulting data are located determines
their class belonging; to know whether a given
data is in the infrequent or frequent region,
the directed distance, yi,n, from it to the
classification boundary is computed as it follows:

yi,n = wTxi,n + w0, (1)

where w and w0 correspond to the parameters
determined by the first classification stage and
xi,n represents the i-th feature vector in the n-th
stimulation sequence for i=1,2,. . . , 12 (i.e. each
of the twelve targets) and for n=1,2,. . . , N. As it
was mentioned, the sign of this result indicates
the side of the hyperplane on which the data fall;

to gather the evidence each target presents at the
end of every stimulation sequence a cumulative
distance vector, Yin, is constructed, whose n-th
element is computed in the following terms:

Yin =
n∑
j=1

yi,j (2)

where yi,j represents the directed distance of the
i-th target calculated from (1).

Figure 6 illustrates the projections of the
cumulative distance vectors after the first (n=1);
second (n=2); third (n=3) and fourth (n=N=4)
stimulation sequence. As one can see, the
results generated for both classes vary in very
different ranges; the more stimulation sequences
the system presents, the more distinguishable the
vectors become.

From these results N new training
datasets are constructed, each one containing
the corresponding Yi,n cumulative distance
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vectors, for n=1,2,. . . ,N. Each dataset contains
representative information of the n-th and the
previous (n-1) target-related responses, which
is used to generate the second classification
stage corresponding to a bank of N linear
discriminants.

C.2. Second Classification Stage

Each one of the N linear discriminants generated
in this stage is trained over half of the second
classification stage training dataset, as the other
half will be used to fit the corresponding logistic
sigmoid functions. Each dataset consists of the
first n vector components of the training data,
for n=1, 2,. . . , N; over which
the same feature selection
method as the one mentioned
in the first classification stage
section is performed.

The resulting parameters consist of a set
of numbers indicating which elements of the
cumulative distance vectors contained the most
relevant information to differentiate data from
both classes; a vector, vn, which represents the
normal vector to the hyperplane which best
separates both memberships; and a third scalar
parameter, v0n, which denotes the bias of the
classification surface. This means that from
each of the N training datasets a classification
space is defined; so that, every unseen data
classification label can be determined after the
n-th stimulation sequence by calculating the
directed distance, zi,n, between the resultant
mapped cumulative distance vector to the
classification space, Y′i,n and the corresponding
hyperplane in the following terms:

zi,n = vTnY′i,n + v0,n (3)

As it was said, the farther away the mapped
vector is from the classification surface the
more reliable the classification result; under
this scheme, in order to map the whole real
axis into a finite interval comprising the range
(0,1), a logistic sigmoid function is fitted to the
ensuing directed distances. This function can be

presented, in a parametric form, as follows:

σ(zi,n) = 1
1 + eαz1,n+β (4)

where zi,n denotes the corresponding directed
distance and, α & β, represent two adjusted
parameters which are calculated in order to
enhance the regression result using an improved
fitting algorithm [7,8] over the remaining half of
the second stage classification data.

As it is assumed that the class-conditional
densities for infrequent and frequent classes
are Gaussian and that they share the same
covariance matrix as well, the results obtained
from (4) are equivalent to Bayes’ posterior
probability, so that:

p(Cinf |zi,n) = p(zi,n|Cinf )p(Cinf )
p(zi,n|Cinf )p(Cinf ) + p(zi,n|Cfrec)p(Cfrec)

= σ(zi,n)

(5)
This result means that it is possible

to compute the posterior probability without
having to calculate the class-conditional densities
required in order to evaluate Bayes’ theorem,
since using a logistic sigmoid function represents
an equivalent procedure. It is important to
emphasize that the second stage classification
outputs consist then of probability values which
indicate, after every stimulation sequence, all
target-related evidence of belonging to the
infrequent class.

In figure 7 the classification spaces generated
for n=1; 2; 3 and 4, as well as the
corresponding logistic sigmoid functions, are
showed. Observe from the first graphics
row that as n increases the elements of both
memberships get more separated, so that the
classes get well disjoint and are divided by
the corresponding decision boundary. Given
that the mapped cumulative distance vectors
for n=1 contain a single element, the resulting
classification space is one-dimensional and the
corresponding decision boundary is a zero-
dimensional hyperplane (i.e. a point). This
means that the one-element vectors generated
after the first stimulation sequence contain
relevant information to differentiate both classes;
otherwise it would not have been possible to



Lindig-León y Yáñez-Suárez. Optimized Detection of the Infrequent Response in P300-Based Brain-Computer Interfaces 63

define a linear discriminant for these data. The
resulting classification spaces for the remaining
cases consider the last two elements of each
cumulative distance vectors datasets as those
presenting the most relevant information to
differentiate data from both classes, so that
each model consists of a two-dimensional space
defining a one-dimensional hyperplane decision
boundary (i.e. a line). The second graphics
row shows the logistic sigmoid function for
n=1; 2; 3 and 4; the dark data points labeled
with “1” consist of the corresponding directed
distances from the infrequent data to the decision
boundary; and the “0” labeled tenuous data
points are the corresponding directed distances
calculated for the frequent data. The resulting
logistic sigmoid functions fitted to all these
points is plotted in black; as it was mentioned,
its evaluation returns a value falling between 0
and 1, which indicates the posterior probability

of belonging to the infrequent class. Observe
that the intersection of both plots occurs in
the middle of this finite interval; where the
probability of belonging to either the infrequent
or frequent class is 50% and it is related
to any data point lying on the hyperplane
surface. As the data get farther from this
threshold, the certainty of belonging to one of
the classes, increases and the system can make
a decision based on the found evidence. Because
of the mutually exclusive relationship between
frequent and infrequent events, the posterior
probability of belonging to the frequent class
can be computed in terms of the complement
of the infrequent class posterior probability, as
can be noticed from the symmetry between
the dark and the tenuous plots, corresponding
respectively to infrequent and frequent class
posterior probabilities.
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Figure 7. The first graphic row shows the classification space obtained for n=1; 2; 3 and 4. Dark “+”
data represent the infrequent mapped vectors and, tenuous “o” data, the frequent mapped vectors;
observe that as n increases, data from both classes get more separated. The second graphic row shows
the corresponding logistic sigmoid functions fitted to the ensuing directed distances. These logistic
sigmoid functions allow compute results in terms of the posterior probability; which will be used in
order to make decisions
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In these plots an important overlap between
data from both classes can be observed; it
is evident that several elements near the
intersection plots will be misclassified. The
classification errors produce false positives
and/or false negatives. A false positive implies to
label as infrequent an actually frequent response,
which leads to select a false coordinate from
de symbol matrix. In the other hand, a false
negative implies to label as frequent an actually
infrequent response. This information, even
when it is wrong, does not involve such an unwise
decision as the one inferred for false positives;
in this case the system just continues the
stimulation process until it achieves to classify
the infrequent data, without compromising the
results precision.

This last paragraph shows that it is
important to select strict thresholds to determine
data classification labels and, even though an
increase of the number of false negatives, avoid
the occurrence of false positives. The decision
thresholds are selected analyzing the training
results, so that all the non-outliers outputs of the
second classification stage get correctly classified.
Figure 8 shows the thresholds selected; which
corresponds to three variable limits varying
according to n’s value due to the fact that, as
n increases, the result get more reliable and it is
possible to relax the decision criteria.

As the posterior probability results generated
from the logic sigmoid functions are very similar
for all subjects the decision thresholds selected
are the same for all of them; the settled criteria
according to these limits are described in the
following sections.

D. Decision Criteria

To select any matrix character it is necessary
to find its row and column coordinates; the
system is unable to make a decision as long as
one of them remains unknown. The selection
approach is performed in parallel individually
for columns and rows; for each group it is
expected to obtain five frequent targets and
only one infrequent. To make the corresponding
inference, four criteria are subsequently applied
over the posterior probability results obtained in
the previous section as described below.

Figure 8. Decision thresholds. Details of their
use are described in section II.D

D.1. If there is any value of p(Cinf |zi,n)≥maxPost,
for i=1,2,. . . ,6, select the target which generates
the largest posterior probability. . The maxPost
value represents a limit above which the certainty
of belonging to the infrequent class is enough to
make a decision. During the performed tests,
this parameter was set to 90%; the first target
showing equal or greater evidence is labeled as
infrequent. If there is no value satisfying this
condition the second criterion is applied.
D.2. If there is a unique value of p(Cinf |
zi,n)≥mediumPost, for i=1,2,. . . ,6, select
the corresponding target. The mediumPost
parameter corresponds to a less rigid threshold
than maxPost, but there is an important
constraint that must be satisfied: there must
be only one value beyond this limit to be able
to make a decision. If there are two or more
greater values, and the maximum number of
sequences has not been exceeded, the system
keeps stimulating the user until it achieves to
differentiate the results. The mediumPost initial
value is 0.75 and its final value is 0.55; this means
that evidence with 75% certainty of belonging
to the infrequent class is required to make a
decision after the early stimulation sequences;
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and a certainty of 55% after the latest ones. This
threshold can be decreased because the results
become more reliable as more information from
subsequent responses is available. If there is no
value equal or greater than mediumPost, there
is still a possibility to make a decision based on
the third criterion.
D.3. If there is a unique value of
p(Cinf |zi,n)≥ minPost, for i=1,2,. . . ,6, select
the corresponding target. This criterion is
applied when no target shows enough evidence of
belonging to the infrequent class. In this case the
approach consists in determining the posterior
probability of each target of belonging to the
frequent class. If there are five targets showing
reliable evidence of being of this type, the only
discarded one is labeled as infrequent. The
frequent class posterior probability is computed
in terms of p(Cinf |zi,n); this means the aim is
to find those targets showing little evidence of
belonging to the infrequent class. The minPost
parameter has an initial value of 0.05 and a final
value of 0.3; which implies that there must be

five targets showing evidence with 95% certainty
of belonging to the frequent class after the
early stimulation sequence to label as infrequent
the discarded one. As more information from
subsequent responses is available, this tolerance
decreases to 70%. If there is no value equal or
greater than minPost and the maximum number
of sequences has not been exceed; the systems
keeps stimulating the user until it achieves to
differentiate the results. If the system was not
able to make a decision after the last stimulation
sequence, the fourth criterion is applied.
D.4. If none of the preceding criteria are satisfied
and the number of stimulation sequences is equal
to N, label as infrequent the one which has the
maximum value of p(Cinf |zi,n).

RESULTS AND DISCUSSION

In this section, the system performance is
described using Table-1 validation dataset;
which consists of an unseen data group from
which the efficiency is evaluated.

15 
 

 

 
 

 

 Figure 10 shows the same described process for the corresponding column data. In this case the system 

would had been able to make a decision after the first stimulation sequence since the third column data meets the 

third criterion (i.e., is the only value greater than minPost threshold); nevertheless, as it is necessary to select both 

coordinates and the corresponding row had not been yet found, the system must continue the stimulation 

process. After the third stimulation sequence the row coordinate has been found and therefore it is possible to 

select the corresponding column coordinate; which is determined by the third row data meeting the third criterion 

(i.e., its value is greater than maxPost threshold); so that the chosen character consists of the one located at 

coordinates (1, 3), which corresponds to letter “C”. As can be verified from table 1 and the corresponding 

validation dataset this is a correct result consisting of the 22-subscript symbol. 
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Figure 9. Infrequent target selection process over the row data for one of the validation dataset
characters. The first row data meets the first criterion after the third stimulation sequence, so that the
system selects as infrequent the first matrix row. Before that because of the nearness between the first
and the second data it is no possible to make a decision.
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In figure 9 the infrequent target selection
process over the row data for one of the
validation dataset characters is presented;
each graphic line is related, from up to
down, to one of the n-values, from n=1; 2
and 3; and they represent, from right to
left, the mapped cumulative distance vectors,
Y′i,n to the corresponding classification space;
the transformation over the logistic sigmoid
functions of the directed distances, zi,n, to
posterior probability results, p(Cinf |zi,n); and
the applied decision criteria. Each one of the six
rows as well as each one of the six columns of the
symbol matrix is identified in figures 7 and 8. As
can be inferred, the system is unable to make a
decision until the third stimulation sequence had
finished and the first row data meets the first
criterion (i.e., its value is greater than maxPost
threshold) so that the first matrix row is selected
as infrequent. Before that because the second
and first rows data are very close each other it is
necessary in order to distinguish the infrequent-

type one to get more information.
Figure 10 shows the same described process

for the corresponding column data. In this
case the system would had been able to make a
decision after the first stimulation sequence since
the third column data meets the third criterion
(i.e., is the only value greater than minPost
threshold); nevertheless, as it is necessary to
select both coordinates and the corresponding
row had not been yet found, the system must
continue the stimulation process. After the
third stimulation sequence the row coordinate
has been found and therefore it is possible
to select the corresponding column coordinate;
which is determined by the third row data
meeting the third criterion (i.e., its value is
greater than maxPost threshold); so that the
chosen character consists of the one located at
coordinates (1, 3), which corresponds to letter
“C”. As can be verified from table 1 and the
corresponding validation dataset this is a correct
result consisting of the 22-subscript symbol.
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 Table 2 shows the results obtained after using the proposed methodology over the validation dataset 
presented in table 1 for an N-value of 4; the corresponding results generated by the P300_Speller for Ñ=4 are 
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Figure 10. Infrequent target selection process over the column data for one of the validation dataset
characters. Even when the third column data could have been selected since the first stimulation
sequence based on the third criterion, the system must continue the stimulation process until it had
found also the row coordinate.
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Table 2. Performance comparison between the conventional method and the proposed methodology
for a value of N=Ñ=4.

Validation Results for N = Ñ = 4

Proposed Method P300 Speller

Accuracy (%) char/min seq/char Accuracy (%) char/min seq/char

100 6.67 2.27 100 4.62 4

Table 2: Performance comparison between the conventional method and the
proposed methodology for a value of N = Ñ = 4.

10-Fold Cross Validation Test for N = Ñ = 4

Fold Proposed Method P300 Speller

Accuracy (%) char/min seq/char Accuracy (%) char/min seq/char

1 100 5.58 3 100 4.62 4

2 100 5.58 3 100 4.62 4

3 33.33 4.9 3.67 33.33 4.62 4

4 100 5.22 3.33 100 4.62 4

5 100 7.74 1.67 100 4.62 4

6 66.67 5.22 3.33 100 4.62 4

7 100 5.58 3 100 4.62 4

8 100 6.49 2.33 100 4.62 4

9 100 6.49 2.33 100 4.62 4

10 100 7.74 1.67 100 4.62 4

average 90 ± 22.5 6.05 ± 1.03 2.73 ± 0.7 93.33 ± 21.08 4.62 ± 0 4 ± 0

Table 3: 10-fold cross validation for a value of N = Ñ = 4; note that the stan-
dard deviation obtained for the performance indicators presents small values,
which supports the independence of results from the partition into training and
test datasets.
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Table 2 shows the results obtained after using
the proposed methodology over the validation
dataset presented in table 1 for an N-value of
4; the corresponding results generated by the
P300_Speller for Ñ=4 are also shown in order to
compare both performances. The performance
indicators consist of the gained accuracy; the
averaged characters spelled per minute; and the
averaged stimulation sequences needed in order
to select each matrix symbol. Observe that
in both cases the gained accuracy is 100% but
notice that the new proposal is more than 30%
faster; which reveals the convenience of using this
approach.

A 10-fold cross validation test is performed in
order to guarantee the results independence from

the partition into training and test datasets; to
this end table-1-training dataset is partitioned
randomly with no repetitions to generate 10
groups. Each one consists of a test dataset
comprising approximately 10% of the data;
and a training dataset including the remaining
information; as it was described in section B,
first and second classification stages training
datasets are generated from this last group. The
results obtained for an N-value of 4 are shown
in table 3 together with those generated by the
P300_Speller R© system using the corresponding
value of Ñ=4. Observe that in both cases the
obtained results show little dispersion; which
means that they are independent from the
partition data.

Table 3. 10-fold cross validation for a value of N=Ñ=4; note that the standard deviation obtained
for the performance indicators presents little values, which proves the results independence from the
partition into training and test datasets.

Validation Results for N = Ñ = 4

Proposed Method P300 Speller

Accuracy (%) char/min seq/char Accuracy (%) char/min seq/char

100 6.67 2.27 100 4.62 4

Table 2: Performance comparison between the conventional method and the
proposed methodology for a value of N = Ñ = 4.

10-Fold Cross Validation Test for N = Ñ = 4

Fold Proposed Method P300 Speller

Accuracy (%) char/min seq/char Accuracy (%) char/min seq/char

1 100 5.58 3 100 4.62 4

2 100 5.58 3 100 4.62 4

3 33.33 4.9 3.67 33.33 4.62 4

4 100 5.22 3.33 100 4.62 4

5 100 7.74 1.67 100 4.62 4

6 66.67 5.22 3.33 100 4.62 4

7 100 5.58 3 100 4.62 4

8 100 6.49 2.33 100 4.62 4

9 100 6.49 2.33 100 4.62 4

10 100 7.74 1.67 100 4.62 4

average 90 ± 22.5 6.05 ± 1.03 2.73 ± 0.7 93.33 ± 21.08 4.62 ± 0 4 ± 0

Table 3: 10-fold cross validation for a value of N = Ñ = 4; note that the stan-
dard deviation obtained for the performance indicators presents small values,
which supports the independence of results from the partition into training and
test datasets.
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Figure 11. Results obtained from table-1 data using the proposed methodology and the P300_Speller R©

system for different values of N=Ñ.

Table 4. Averaged results from 14 subjects using the proposed methodology and the P300_Speller R©

for different values of N=Ñ.

Validation

N = Ñ Proposed Method P300 Speller

Accuracy (%) char/min seq/char Accuracy (%) char/min seq/char

2 75.34±19.69 7.27±0.27 1.92±0.11 74.58±19.76 7,06±0 2±0

3 86.61±12.61 6.62±0.44 2.37±0.25 85.41±14.37 5.58±0 3±0

4 94.49±6.20 6.55±0.58 2.48±0.40 94.49±6.20 4.62±0 4±0

5 94.95±6.54 6.10±0.63 2.86±0.52 92.55±6.29 3.93±0 5±0

6 98.7±3.30 6.14±0.78 2.77±0.63 96.47±6.11 3.42±0 6±0

8 99.29±2.67 6.04±0.93 2.99±0.76 96.68±7.03 2.73±0 8±0

Table 4: Averaged results from 14 subjects using the proposed methodology
and the P300 Speller for different values of N = Ñ .

3

Figure 11 shows the results obtained for
different N-values using table-1 data; the
partition into first and second stage training
datasets was performed for each particular
N-value as it was described in section B;
the corresponding Ñ-value results generated by
the P300_Speller R© system are also shown to
compare both performances. Additionally, the
averaged 10-fold cross validation test outcomes
obtained with each of the systems are plotted in
order to verify the results independence from the
partition into training and test datasets.

Observe that the gained accuracy with both
systems is satisfactory and that it remained
consistent at 100% from a value of N=Ñ=4.
As regards the spelling rate, it was much more
superior for the proposed system since a value
of N=Ñ=3 and it remains consistent for greater
values; on the contrary, for the P300_Speller R©

the spelling rate starts falling dramatically.

Finally in table 4 the averaged results
obtained from all 14 users are shown; observe
that the gained accuracy remains similar for
both systems and that it is satisfactory from
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a value of N=Ñ=4. Once again, the resulting
spelling rate for the proposed methodology is
much more superior than the one achieved by
the P300_Speller R©. Observe that the indicated
standard deviation shows little dispersion; which
demonstrates that both methods are suitable for
different users.

The averaged outcomes of the 10-fold cross
validation obtained for each user also showed
little dispersion, so that it can be stated the
independence of the results from the partition
data.

CONCLUSIONS

The results obtained in this work are promising;
using a dynamic parameter to determine the
number of stimulation sequences for each matrix
symbol seems to be a very adequate approach
to control this kind of applications. The
compromise between spelling rate and spelling
accuracy has been considerably reduced and the
system presents as many stimuli as necessary to
determine each symbol matrix; which diminish
the average spelling rate. This improvement is
due to the dynamic determination of the number
of stimulation sequences; which allows selecting
very quickly those targets showing important
evidence of belonging to the infrequent class and
using the saved time to find those difficult ones.

From the obtained results it can be observed
that the new proposal gets for all N-values a
little bit better accuracy as the gained for the
corresponding Ñ values by the P300_Speller R©;
nevertheless, as regards the spelling rate, an
important improvement has been achieved by the
new methodology; which enhanced the operating
speed for an N-value of N=Ñ=2; 3; 4; 5; 6 and
8 over 2.89%; 15.71%; 29.47%; 35.57%; 44.14%
and 54.8%, respectively.
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