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ABSTRACT  
The preservation of foods such as milk, meat, and vegetables through fermentation results in products like yogurt, 
cheese, pickles, sausages, and silage with an extended shelf life compared to their natural unprocessed counterparts. 
This work aims to formulate a mathematical model of first-order ordinary differential equations (ODEs) that accounts 
for both the physicochemical and microbiological parameters affecting biomass kinetics [B(t)], acidity [A(t)], and 
viscosity [V(t)] as a function of temperature across different yogurt samples. In order to validate the efficacy of the 
model in predicting yogurt shelf life, we compared its fitting results with commonly employed systems or equations, 
including the Weibull model, the Reaction Order model, the Arrhenius Equation, and the Q10 Factor. Our evaluation, 
based on R-squared (R2) values exceeding 0.95, demonstrates the robustness of the proposed model. Furthermore, 
all parameters were estimated along with their corresponding 95 % confidence intervals. The mathematical model 
estimates the dynamic of each of the physicochemical and microbiological parameters which will help to predict the 
behavior over time of the shelf life of yogurt at different temperatures.
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RESUMEN 
La conservación de alimentos como la leche, la carne y las verduras mediante la fermentación da como resultado 
productos como yogur, queso, encurtidos, salchichas y ensilados con una vida útil más prolongada en comparación 
con sus homólogos naturales sin procesar. El objetivo es formular un modelo matemático de ecuaciones diferenciales 
ordinarias (EDOs) de primer orden que tengan en cuenta los parámetros fisicoquímicos y microbiológicos que afectan 
la cinética de la biomasa [B(t)], la acidez [A(t)] y la viscosidad [V(t)] en función de la temperatura en diferentes muestras 
de yogur. Para validar la eficacia del modelo para predecir la vida útil del yogur, comparamos los resultados de ajuste 
con métodos comúnmente empleados como el modelo de Weibull, el modelo de orden de reacción, la Ecuación de 
Arrhenius y el Factor Q10. Nuestra evaluación, basada en valores de R-cuadrada (R2) mayores a 0.95, demuestra la 
solidez del modelo propuesto. Además, se estimaron todos los parámetros junto con sus correspondientes intervalos 
de confianza del 95 %. El modelo matemático estima la dinámica de cada uno de los parámetros microbiológicos 
y fisicoquímicos los cuales ayudan a predecir el comportamiento sobre la vida de anaquel del yogur a diferentes 
temperaturas.

PALABRAS CLAVE: datos experimentales, regresión no lineal, simulaciones numéricas, sistemas no lineales variantes en 
el tiempo, vida de anaquel
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INTRODUCTION
Dairy products are foods with nutritional characteristics that exist in the market, their care in the industry is tran-

scendental since they offer a proportion of high-quality proteins while also providing calcium and vitamins such as 
A, D, E, and the B set [1]. The preservation of foods such as milk, meat, and vegetables to obtain products such as 
yogurt, cheese, pickles, sausages, silage, etc., allows them to have a longer shelf life than natural or unprocessed 
products. The shelf life of dairy products is longer than that of milk, but is still limited; hence, various techniques 
have been adopted to improve it [2]. The shelf life and quality of yogurt are determined by physical, chemical, and 
microbiological changes that modify its sensorial properties and decrease the general attributes of the product and 
therefore, overall consumer approval [3][4]. Now, concerning shelf life prediction, Mataragas et al. [5] developed a 
methodology to formulate a predictive model of yogurt spoilage concluding that shelf life cannot be established 
with microbiological data alone, as one requires information of other parameters determined by sensory and phys-
icochemical analyses. Shao et al. evaluated the Fourier-transform infrared spectroscopy as a rapid and non-invasive 
analytical technique to assess the quality and shelf life of yogurt during storage [6]. Papadopoulou et al. used partial 
least squares and, support vector machine regression and classification models to determine quantitative estima-
tions of overall yogurt characteristics [7]. Furthermore, a survival analysis methodology was applied to estimate the 
shelf life of the probiotic yogurt by considering either a 25 % or a 50 % probability of consumer rejection; from the 
latter, shelf life was estimated at 38 and 53 days, respectively [8]. Artificial Neural Networks (ANN) models can also 
be applied to predict quality and deterioration during storage, these parameters are important in risk assessment, 
food safety and quality [9]; single- and double-layer Neural Networks were used to predict food quality in other milk 
products such as spreadable processed cheese [10], soft cheese [11], Ultra-High Temperature (UHT) soybean milk [12], 
and regular soy milk [13]. It is worth mentioning that viscoelastic, organoleptic, and microbial characteristics as well 
as the shelf life of yogurt changed with the addition of fruits and vegetables, however, they are mainly used to 
improve the nutritional and functional properties of the product [14]. Now, one can see that the most common shelf 
life estimation methods are by means of probability techniques and mathematical modelling. Probability techniques 
include the following distributions: normal, logs-normal, Weibull, exponential, and extreme value, among others. 
Meanwhile, concerning mathematical modelling one can find linear and nonlinear (sigmoidal-type) primary mod-
els; the reaction order model; the Arrhenius equation; the Q10 factor; and the survival method [5][14][15][16][17][18][19]. In 
the latter, shelf life prediction may be performed at either a constant or variable temperature [20]. 

This work aims to evaluate a proposed nonlinear and time-varying mathematical model of first-order ordinary 
differential equations (ODEs) that consider the influence of physicochemical and microbiological parameters on 
biomass kinetics evolution, specifically acidity, and viscosity as functions of temperature. Further, we compare the 
fitness capabilities of our model with those well-established in the literature for shelf life estimation.

MATERIALS AND METHODS
This section describes the origin of the experimental data, the procedure to fit our proposed model, the biostatistics 

around the estimation of all parameters, and the description of each equation.

Experimental data 
Experimental data was extracted from Zhi et al. [1] where they discuss the evaluation of yogurt shelf life using phys-
icochemical, microbiological, and sensory parameters. Values for the time-evolution were extracted with the open-
source software Graph Grabber v2 plot digitizing from Quintessa Ltd. This application allows us to manually extract 

https://www.quintessa.org/software/downloads-and-demos/graph-grabber-2.0.2
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data points from the original figures as a comma separated value (cvs) file. The data corresponds to two yogurt 
samples identified as S0 and S0 for two temperatures, 5 °C and 15 °C. In each sample, the following three variables 
were extracted: biomass [B(t)], acidity [A(t)], and viscosity [V(t)], as it is illustrated in Figure 1.

1 2

FIGURE 1.  Experimental data extracted from Zhi et al. [1] with the Graph Grabber software. Each point corresponds to the shelf 
life of two samples of yogurt (So and So) observed at 5°C for over 20 days and at 15°C for over 10 days. Panels from top to 

bottom are for acidity [A(t)], viscosity [V(t)], and biomass kinetics [B(t)]; where logx=log10 x.

1 2

https://www.quintessa.org/software/downloads-and-demos/graph-grabber-2.0.2
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Mathematical modelling and data fitting
The dynamics of physicochemical and microbiological parameters of yogurt at two different shelf temperatures 
were modelled through a set of three first-order ODEs describing acidity in Titratable acidity units (°T), viscosity in 
pascal-second (Pa·s), and biomass in colony-forming units (CFU) per gram. Further, each equation considers the 
temperature (T) as follows:

It is evident that Equations (1), (2), (3) are non-linear and nonautonomous. Further, based on the positivity of 
dynamical systems theory, positive half-trajectories with nonnegative initial conditions [A(0),V(0),B(0)≥ 0],  will be 
located  within the following domain:

�̇�𝐴 = 𝛼𝛼!𝐴𝐴(1 − 𝛼𝛼"𝐴𝐴)𝑡𝑡
!
#$ ,							 (1)

The latter implies that all solutions will always have nonnegative values, which corresponds with the biological 
meaning of each variable. Now, let us describe the biological assumptions on which our mechanistic model (1)-(3) 
was formulated. Equation (1) describes the increase in Acidity [A(t)] by the logistic law, where α1 is the growth rate 
and α2 the limited rate capacity. Equation (2) describes the decrease in Viscosity [V(t)] where the parameter β1 

denotes the decrease rate and the lower value is given by 1/β2. Equation (3) describes Biomass [B(t)] dynamics with 
an initial growth phase formulated by the Michaelis-Menten term with rate γ1; then, the latter is followed by a death 
phase after the maximum concentration measured in the samples by the logistic law where γ2 is the decrease rate 
with lower bound given by 1/γ3. Further, it should be noted that we found that both time (t) and temperature (T) 
needed to be considered in the modelling process; in Equation (1), these parameters are included as a radical term 
[t1⁄T], in Equation (2) as a product of both parameters [tT], and in Equation (3) as a rational term [t/T].

Now, in order to fit Equations (1)(2)(3) to the experimental data of Figure 1, we developed an algorithm in Matlab 
2023a based on the fitnlm function from the Statistics and Machine Learning Toolbox. Further, equations were 
numerically solved by using the improved Euler’s method (Heun’s method) with an integration step (Δt) of 1×10-3. 
Initial values for the fitnlm function were set as follows for both 5 °C and 15°C data of acidity and viscosity: 

�̇�𝑉 = 𝛽𝛽!𝑉𝑉(1 − 𝛽𝛽"𝑉𝑉)𝑡𝑡𝑡𝑡,					 (2)

�̇�𝐵 =
𝛾𝛾!𝐵𝐵
𝐵𝐵 + 𝑇𝑇 + 𝛾𝛾"𝐵𝐵

(1 − 𝛾𝛾#𝐵𝐵)
𝑡𝑡
𝑇𝑇.								 

(3)

𝑹𝑹!,#$ = {𝐴𝐴(𝑡𝑡), 𝐵𝐵(𝑡𝑡), 𝑉𝑉(𝑡𝑡) ≥ 0}. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:	𝑃𝑃! = [1 × 10"#, 1 × 10"#], 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉:	𝑃𝑃! = [1 × 10"#, 1 × 10"#], 

 whilst for biomass, the following were set for 5 °C:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:	𝑃𝑃! = [1 × 10"#, 1 × 10"#, 1 × 10"#], 

 and the next for 15 °C:
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:	𝑃𝑃! = [1 × 10"#, 1 × 10"$, 1]. 
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Fitting results from the fitnlm function include the estimated value for each parameter as well as common biosta-
tistics such as the t-value, degrees of freedom (dof), standard error (SE); 95 % confidence intervals (95CI), and p-va-
lue. A measure of the goodness of fit is provided by means of the R-squared (R2). Results are shown in Tables 1-4 
and illustrated in Figures 2-3 and will be discussed in the next section. Now, let us briefly explain the most common 
models used for shelf life prediction as results from our model will be compared with those determined with the 
Weibull Model, the Reaction Order, the Arrhenius Equation, and the Q10 Factor. Furthermore, the threshold for 
yogurt feasibility is already established by the NOM-181-SCFI/SAGARPA-2018, which specifies that the product 
must contain at least 107 CFU/g of viable biomass concentration.

Weibull Model
The Weibull Model has been used to estimate the shelf life of several foods, including yogurt [16] by the next Equation 
4:

𝐸𝐸 = 𝛼𝛼𝛼𝛼 %1 +
1
𝛽𝛽	*, 

(4)

where a and β are known parameters as they define the shape and scale of the study to be carried out, meanwhile, 
γ represents the gamma function. Results were computed by means of statistical software using the data illustrated 
in Figure 1.

Reaction Order
The Reaction Order is mainly based on the principles of chemical kinetics with the following structure in Equation 

5:

𝑡𝑡 =
𝐴𝐴 − 𝐴𝐴!
𝐾𝐾 , (5)

where A is the final half-life value, A0 is the initial quality and K is the reaction rate. Values were determined from a 
linear equation, where A0 is the intercept and K its slope.

Arrhenius Equation
The Arrhenius equation, also known as activation energy, focuses on the rate of chemical reactions as their tem-

perature increases as indicated below Equation 6:

𝑙𝑙𝑙𝑙 𝑘𝑘 = 𝑙𝑙𝑙𝑙 𝐴𝐴 −	𝐸𝐸!𝑅𝑅𝑅𝑅, (6)

Where the zero-crossing points can be used to estimate shelf life by considering the effect of temperature on the 
kinetics of the product [21][22]. Therefore, the equation to determine the shelf life according to [23] is given by next 
Equation 7:

𝑄𝑄! = 𝑄𝑄" − 	𝑘𝑘𝑡𝑡#,			 (7)

where Q0 is the value of the quality characteristic at the start of the experiment and Qe is the value reached at the 
time ts, i.e., the estimated shelf life, and k is the speed of the reaction, i.e., the slope of the straight line.
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Q10 Factor
The Q10 factor states that the rate of degradation is affected by a constant rate when temperature changes with time 

[18]. This makes it possible to determine the shelf life of foods by the following Equation 8:

𝑡𝑡! = 𝑡𝑡(𝑄𝑄!")($!%$")/!",						 (8)

where t is the service lifetime, Q10 is the acceleration factor, and T1 and T2 represent the changes in temperature in 
degree Celsius (°C).

1

FIGURE 2.  Fitting results of Equations (1)(2)(3) to the observed data corresponding to the two samples of acidity [A(t)], 
viscosity [V(t)], and biomass at 5 °C and 15 °C. The × marker represents the observed data where green is for sample 1 [So(t)] 

and red for sample 2 [So(t)]; the solid lines are for the approximated data from our mathematical model.2
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RESULTS AND DISCUSSION
Nonlinear regression was performed for all variables [A(t), V(t) and B(t)] at two temperatures [5 °C and 15 °C] for 

the two samples of yogurt [So (t) and So (t)]. The fitting results of our model are illustrated by means of in silico 
experimentation in Figure 2. Estimated values of parameters and biostatistics for Equations (1)(2)(3) are shown, 
respectively in Tables 1-3, where we present the corresponding standard error (SE), 95 % confidence intervals 
(95CI), and the p-value for each estimate. The latter implies that the significance value (α) was predefined as 0.05. 
These statistics allow us to conclude on the statistical significance of our results. 

One can see that all lower bounds of the 95CI in Table 1 and Table 2 are positive, and that p-values are lower than 
α. Hence, Equations (1) and (2) are able to describe with a high level of confidence the dynamics of both Acidity 
[A(t)] and Viscosity [V(t)]. Further, as it is shown in Table 4, the coefficient of determination for the two samples at 
both temperatures is higher than 0.95. Now, regarding results for Equation (3) shown in Table 3, we found that our 
proposed model can accurately describe the dynamics of biomass [B(t)] as all estimated values but one was statisti-
cally significant. Further, the coefficient of determination for the two samples at both temperatures is higher than 
0.98 (see Table 4). Following the latter, the estimated value of parameter γ2 in1 Equation (3) had a negative lower 
bound in the 95CI due to the non-steep slope of the growth phase in sample 1 [So(t)] of biomass at 15 °C, as it is illus-
trated in the right lower panel of Figure 1. Therefore, results from the nonlinear regression algorithm indicated that 
only parameter γ1 had a significant influence on the observed growth phase as there was nearly zero growth of bio-
mass in the first three days. Additionally, it is important to disclose the following information regarding the fitting 
process of our mathematical model. Nonlinear regression of Equations (1)(2)(3) at 5 °C is performed, respectively, 
at 7, 8, and 7 dof, with t-values of 2.3646, 2.3060, and 2.3646.  Meanwhile, at 15 °C we have the following: 10, 10, 
and 9 dof, with t-values of 2.2281, 2.2281, and 2.2622. It is evident that as more data is available the value of the 
dof is higher and the t-value is lower. The latter is used to compute the margin of error (MoE) for the estimated val-
ues of parameters (MoE = t-value·SE), and the estimate ± MoE gives us the bounds of the 95CI.

Now, let us apply Equations (1)(2)(3) to observe overall changes in the dynamics of each variable at 5 °C and 15 °C 
for 60 days (2 months). Results are illustrated in Figure 3, where the base 10 logarithm of the threshold 107 CFU/g 
is indicated in both panels of biomass evolution in the two lower panels of the in silico experimentation.

Concerning acidity, this variable converges to a lower level at 5 °C compared to 15 °C samples. The latter implies 
that a higher temperature increases acidity values in yogurt, this relationship is further elucidated in Table 1, where 
values for α1 are higher at 15 °C than at 5 °C. However, viscosity values remain consistent at both temperatures, 
converging to ~1460 Pa·s for sample 1 and ~1520 Pa·s for sample 2, but it should be noted that values for β1 are dif-
ferent across samples and temperatures, as documented in Table 2. Returning to biomass dynamics, is evident that 
the final predicted concentration is inversely proportional to temperature as it is higher at 5 °C and lower at 15 °C. 
Samples 1 and 2 reach a value of 6.809 and 6.867 logCFU/g, respectively, at 5 °C. Meanwhile, at 15 °C the model 
estimates a concentration of 6.377 and 6.614 logCFU/g in samples 1 and 2, respectively. Therefore, at lower tem-
peratures, the biomass concentration remains above the established threshold for more days. These differences are 
also reflected in the estimated values of γ1 and γ2 documented in Table 3.

Yogurt in optimal conditions adheres to the defined standards of the NOM-181-SCFI/SAGARPA-2018. The experi-
mental data and the in silico experimentation indicate that the observed variables are affected by the storage tem-

1 2
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perature as well as the initial biomass concentration [B(0)]. Higher temperatures lead to changes in the microbiolog-
ical characteristics that ultimately reduce the shelf life of the product; for samples 1 and 2 at 5 °C we have results of 
9.6 and 11.6 days, whilst at 15 °C results for samples 1 and 2 are estimated at 7.3 and 8.9 days. The latter implies a 
reduction in shelf life of 2.3 and 2.7 days, respectively. Furthermore, initial concentrations of biomasses were mea-
sured at 7.119 and 7.318 logCFU/g for samples at 5 °C, and 7.150 and 7.341 logCFU/g for samples at 15 °C, respec-
tively, by Zhi et al. [1].

FIGURE 3.  Prediction results of 30 days for the two samples of acidity, viscosity, and biomass, at 5 °C and 15 °C. It should be 
highlighted that all solutions [A(t), V(t), B(t)] are bounded and dissipative. Boundedness ensures that concentrations of 

substances stay within physiologically acceptable ranges. Dissipativity is linked to the energy balance of the system and is 
often associated with the metabolic and thermodynamic aspects of biological processes. The × marker represents the 

observed data where green is for sample 1 [So(t)] and red for sample 2 [So (t)]; the solid lines are for the approximated data 
from our mathematical model.

1 2  
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Now, let us discuss the results of the estimated shelf life of yogurt with the Weibull Model, the Reaction Order, the 
Arrhenius Equation, and the Q10 factor. First, it should be noted that these models should be applied to each data set 
of each variable. Hence, in Figures 4, Figure 5 and Figure 6 we present the different results estimated for the shelf 
life of the sample 1 of yogurt at the two observed temperatures. Furthermore, the exact shelf life estimation in days 
is presented in Table 5 for sample 1. When analyzing acidity, the longest shelf life was estimated at 5 °C with a result 
of 569 days by the Reaction Order. Meanwhile, the shortest time was obtained with the Weibull model at 15 °C with 
78.5 days as shown in Figure 4. Concerning viscosity, both the Weibull Model and the Reaction Order estimated a 
longer shelf life at a higher temperature, 294.4 and 81 days, respectively. However, both the Arrhenius Equation and 
the Q10 factor estimated a longer shelf life for the lower temperature data as illustrated in Figure 5. Now, when 
applying all models to the biomass data sets of sample 1, the longer shelf life was estimated for the temperature at 
5 °C, which is to be expected in real-life scenarios of yogurt storage. Nonetheless, it is evident that all these models 
overestimate the shelf life of a product such as yogurt. Additionally, these models do not consider the threshold that 
has been stablished for yogurt feasibility by the NOM-181-SCFI/SAGARPA-2018 for the biomass concentration of at 
least 107 CFU/g in the product. 

TABLE 1. Acidity [A(t)]: Estimation of parameters and biostatistics for 5°C  15°C for both samples So and So. The values describe 
the estimate value (Estimate), the standard error (SE), the confidence interval (95CI) and the p-value. 

1 2

  

 

Temperature Sample Parameters Estimate SE 95CI p-value 

5 °C 

𝑆𝑆!"(𝑡𝑡) 
𝛼𝛼" 1.052×10-1 1.722×10-2 6.445×10-2 1.4589×10-1 4.874×10-4 

𝛼𝛼# 1.184×10-2 3.853×10-5 1.175×10-2 1.1934×10-2 1.019×10-15 

𝑆𝑆!#(𝑡𝑡) 
𝛼𝛼" 1.017×10-1 2.015×10-2 5.406×10-2 1.494×10-1 1.484×10-3 

𝛼𝛼# 1.108×10-2 5.478×10-5 1.095×10-2 1.121×10-2 1.904×10-14 

15 °C 

𝑆𝑆!"(𝑡𝑡) 
𝛼𝛼" 1.519×10-1 2.158×10-2 1.039×10-1 2.000×10-1 3.534×10-5 

𝛼𝛼# 8.672×10-3 2.280×10-4 8.1645×10-3 9.180×10-3 3.753×10-12 

𝑆𝑆!#(𝑡𝑡) 
𝛼𝛼" 2.715×10-1 2.655×10-2 2.123×10-1 3.306×10-1 1.295×10-6 

𝛼𝛼# 9.369×10-3 7.693×10-5 9.198×10-3 9.540×10-3 3.418×10-17 

Temperature Sample Parameters Estimate SE 95CI p-value 

5 °C 

𝑆𝑆!"(𝑡𝑡) 
𝛽𝛽" 2.070×10-3 3.876×10-4 1.176×10-3 2.9637×10-3 6.938×10-4 

𝛽𝛽# 6.815×10-4 1.583×10-5 6.450×10-4 7.1801×10-4 9.341×10-11 

𝑆𝑆!#(𝑡𝑡) 
𝛽𝛽" 3.569×10-3 3.884×10-4 2.673×10-3 4.4648×10-3 1.592×10-5 

𝛽𝛽# 6.577×10-4 6.903×10-6 6.418×10-4 6.7363×10-4 1.643×10-13 

15 °C 

𝑆𝑆!"(𝑡𝑡) 
𝛽𝛽" 1.163×10-2 1.470×10-3 8.351×10-3 1.4901×10-2 1.301×10-5 

𝛽𝛽# 6.885×10-4 4.350×10-6 6.788×10-4 6.9819×10-4 2.488×10-18 

𝑆𝑆!#(𝑡𝑡) 
𝛽𝛽" 2.717×10-3 5.607×10-4 1.467×10-3 3.9662×10-3 6.764×10-4 

𝛽𝛽# 6.590×10-4 1.692×10-5 6.214×10-4 6.9672×10-4 2.962×10-12 
 

TABLE 2. Viscosity [V(t)]: Estimation of parameters and biostatistics for 5°C 15°C for both samples So and So. The values 
describe the estimate value (Estimate), the standard error (SE), the confidence interval (95CI) and the p-value. 

1 2
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Temperature Sample Parameters Estimate SE 95CI p value 

5 °C 

𝑆𝑆!"(𝑡𝑡) 

𝛾𝛾" 5.640×10-2 3.565×10-3 4.797×10-2 6.483×10-2 9.767×10-7 

𝛾𝛾# 1.510×10-1 8.117×10-3 1.318×10-1 1.702×10-1 3.215×10-7 

𝛾𝛾$ 1.473×10-1 9.815×10-5 1.470×10-1 1.475×10-1 1.543×10-20 

𝑆𝑆!#(𝑡𝑡) 

𝛾𝛾" 4.059×10-2 1.135×10-2 1.376×10-2 6.743×10-2 9.0134×10-3 

𝛾𝛾# 1.461×10-1 2.028×10-2 9.811×10-2 1.940×10-1 1.770×10-4 

𝛾𝛾$ 1.459×10-1 2.470×10-4 1.453×10-1 1.465×10-1 1.051×10-17 

15 °C 

𝑆𝑆!"(𝑡𝑡) 

𝛾𝛾" 9.465×10-2 2.632×10-2 3.511×10-2 1.542×10-1 5.7819×10-3 

𝛾𝛾# 2.467×10-1 1.363×10-1 -6.159×10-2 5.550×10-1 1.037×10-1 

𝛾𝛾$ 1.575×10-1 6.666×10-3 1.425×10-1 1.726×10-1 2.076×10-9 

𝑆𝑆!#(𝑡𝑡) 

𝛾𝛾" 2.054×10-1 2.525×10-2 1.483×10-1 2.626×10-1 1.935×10-5 

𝛾𝛾# 5.109×10-1 9.235×10-2 3.020×10-1 7.198×10-1 3.644×10-4 

𝛾𝛾$ 1.519×10-1 1.545×10-3 1.484×10-1 1.554×10-1 5.898×10-15 
 

TABLE 3. Biomass [B(t)]: Estimation of parameters and biostatistics for 5°C and 15°C for both samples So and So. The values 
describe the estimate value (Estimate), the standard error (SE), the confidence interval (95CI) and the p-value.

1 2

TABLE 4. The R2 provides a measure of the goodness of fit of our proposed mathematical model (1)-(3) to the observed data of 
each variable.

 
T Sample Acidity 

[A(t)] 
Viscosity 

[V(t)] 
Biomass 

[B(t)] 

5°C 
𝑆𝑆!"(𝑡𝑡) 0.973 0.978 0.999 

𝑆𝑆!#(𝑡𝑡) 0.957 0.987 0.995 

15°C 
𝑆𝑆!"(𝑡𝑡) 0.982 0.972 0.980 

𝑆𝑆!#(𝑡𝑡) 0.980 0.966 0.992 
 

FIGURE 4.  Shelf life estimation for sample 1 of yogurt when analyzing the data sets of the observed acidity
[A(t)] at 5°C and 15°C.
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FIGURE 5.  Shelf life estimation for sample 1 of yogurt when analyzing the data sets of the observed viscosity [V(t)] at
5°C and 15°C.

FIGURE 6.  Shelf life estimation for sample 1 of yogurt when analyzing the data sets of the observed biomass dynamics [B(t)] 
at 5°C and 15°C.

 
T Sample Acidity 

[A(t)] 
Viscosity 

[V(t)] 
Biomass 

[B(t)] 

5°C 
𝑆𝑆!"(𝑡𝑡) 0.973 0.978 0.999 

𝑆𝑆!#(𝑡𝑡) 0.957 0.987 0.995 

15°C 
𝑆𝑆!"(𝑡𝑡) 0.982 0.972 0.980 

𝑆𝑆!#(𝑡𝑡) 0.980 0.966 0.992 
 

TABLE 4. Summarized results for the shelf life estimation of sample 1 [So (t)] with the Weibull Model, the Reaction Order, the 
Arrhenius Equation, and the Q10 factor. Results for the shelf life are given in days.

1
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CONCLUSIONS
As large quantities are wasted in expired dairy products, the industry requires processes to reduce yogurt waste by 

improving quality and extending shelf life. Although there are several methods based on the chemical reaction rate 
to determine the shelf life of yogurt, these give different values for the same experimental data of the product. 
Hence, a mathematical model using first-order ODEs is better suited to determine the overall shelf life based on the 
physicochemical and microbiological properties of the product.

As mentioned before, yogurt reaches the end of its shelf life due to the values established by food standards. 
Therefore, it can be concluded that by modelling the shelf life of each of the samples analyzed, it would be possible 
to better estimate the shelf life based on changes of the different variables analyzed by each food productor.

Therefore, our proposed mathematical model (1)-(3) is able to accurately approximate the changes of each of the 
physicochemical and microbiological variables such as biomass, acidity and viscosity at different storage tempera-
tures. Then, by following the already established thresholds one can estimate the total number of days that the 
product will be suitable for human consumption. Further, when comparing results is easy to determine that a lower 
temperature will increase shelf life and reduce waste in the short-term

One limitation of our model is that it does not consider biomass death rate as it was formulated by means of a com-
bination of growth laws, a Michaelis-Menten kinetics, and the logistic law. Therefore, the in silico experimentation 
of Figure 3 illustrates that once this variable reaches the plateau, then the predicted values do not tend to zero as 
time increases. It is left as future work to validate the model with yogurt samples at different temperatures and 
determine the relationship between the variables, which may allow us to better estimate the shelf life of yogurt by 
considering the dynamics among these different variables.
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