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Detección de lesiones pulmonares por COVID-19 en imágenes de tomografía computarizada 
mediante aprendizaje profundo
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ABSTRACT 
The novel coronavirus (COVID-19) is a disease that mainly affects the lung tissue. The detection of lesions caused by 
this disease can help to provide an adequate treatment and monitoring its evolution. This research focuses on the bi- 
nary classification of lung lesions caused by COVID-19 in images of computed tomography (CT) using deep learning. 
The database used in the experiments comes from two independent repositories, which contains tomographic scans 
of patients with a positive diagnosis of COVID-19. The output layers of four pre-trained convolutional networks were 
adapted to the proposed task and re-trained using the fine-tuning technique. The models were validated with test 
images from the two database’s repositories. The model VGG19, considering one of the repositories, showed the 
best performance with 88% and 90.2% of accuracy and recall, respectively. The model combination using the soft 
voting technique presented the highest accuracy (84.4%), with a recall of 94.4% employing the data from the other 
repository. The area under the receiver operating characteristic curve was 0.92 at best. The proposed method based 
on deep learning represents a valuable tool to automatically classify COVID-19 lesions on CT images and could also 
be used to assess the extent of lung infection.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) is caused by the 

severe acute respiratory syndrome coronavirus type 2 
(SARS-CoV-2). It primarily affects the human respira-
tory system and represents the seventh member of the 
coronavirus family that infects humans [1]. The first 
case, identified as viral pneumonia until then, 
appeared in late December 2019 in Wuhan, China. 
According to the records issued by the World Health 
Organization, until September 1st, 3,341,264 cases 
have been registered in Mexico and 217,558,771 around 
the world [1] [2] [3]. It is known that the COVID-19 infec-
tion has an incubation period from 1 to 14 days, which 
varies depending on some human characteristics like 
the status of the immune system and the age [1]. In 
Mexico, coronavirus cases are classified by stages 
according to their severity, clinical stage and signs 
presented: stage 1 (early infection), stage 2 (pulmo-
nary stage) and stage 3 (hyperinflammatory stage) [4].

The reverse transcription - polymerase chain reaction 
(RT-PCR) tests represent the main method to detect 
COVID-19, providing results with a specificity close to 
100% [5]; however, when using this standard test as a 
reference, some drawbacks must be considered. For 
example, a low sensitivity (59% - 79%) has been observed 
during the early phase of the disease [5] [6] [7]. Due to the 
continuous evolution and genetic diversity that the new 
coronavirus has presented, the results of clinical tests 
can be affected by the variation in the viral ribonucleic 
acid (RNA) sequence [8]. Also, it is import to remark that 
the diagnostic period can vary from 5 to 72 hours [9].

The study presented by Uysal et al. [10] found that 25% 
of asymptomatic patients, diagnosed with an RT-PCR 
test, did not show signs of lesions on their computed 
tomography (CT) scans, while the rest showed abnor-
mal findings associated with lesions similar to those in 
patients with symptoms. The most common signs 
were ground glass opacity (GGO), pure or with consol-
idation or crazy-paving patterns. Thus, due those find-

ings some authors emphasize over the importance of 
performing RT-PCR tests in conjunction with imaging 
procedures such as CT to increase the accuracy of the 
diagnosis, injury identification, and in this way pro-
vide an adequate patient management [11]. 

To confirm the coronavirus disease, the chest CT in 
conjunction with clinical manifestations and the epi-
demiological evidence have become a fundamental 
diagnostic tool. However, discrepancies have been 
reported between the results of laboratory tests and 
the characteristics observed in diagnostic images [12]. 

Recently, some studies have shown that the CT scan 
of patients (asymptomatic or those in whom the result 
of RT-PCR test was negative) depicts abnormal signs 
that can be useful for the disease detection, where 
these studies have reported a sensitivity between 88% 
and 98% [5] [6] [13] [14]. The advantage of CT diagnosis lies 
in its short exploration time and the high resolution of 
the acquired image, useful for detecting and classify-
ing lung lesions.

At present, most of the expert researchers in the clin-
ical applications of Artificial Intelligence (AI) have 
focused on the diagnosis of patients with COVID-19 
through the processing of medical images, addressing 
the analysis of findings observed in chest x-rays and/
or CT scans [15] [16]. There are several approaches that 
aim to take advantage of machine learning (ML), espe-
cially deep learning, to diagnose CT scans using binary 
pathway convolutional neural networks (CNN) (posi-
tive vs. negative) or multiple classification (healthy vs. 
COVID-19 versus other types of pneumonia) [16]. An 
example of this is the COVNet architecture performed 
by Li et al., which classifies positive results for COVID-
19, community acquired pneumonia or negative for 
any lung disease through a three-dimensional CNN 
constituted by the ResNet50 architecture, resulting in 
90% of sensitivity and a specificity of 96% [17]. Similarly, 
Yang et al. in [13], built a publicly available database of 
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CT scans of COVID-19 patients that could be used to 
train deep learning models. This database was subse-
quently used to develop an algorithm to classify 
COVID-19 patients in a binary way, obtaining an accu-
racy of 83% and an area under the receiver operating 
characteristic curve (AUC-ROC) of 0.95. Other work 
that uses deep learning techniques developed a model 
called CTnet-10 obtaining an accuracy of 82.1%. The 
authors also tested models such as DenseNet169, 
VGG16, ResNet50, InceptionV3 and VGG19, obtaining 
an accuracy of 94.52% with the latest network [18]. On 
the other hand, in [19] the authors attempted to seg-
ment lung lesions associated with COVID-19, reaching 
specificity values of up to 100% in specific tasks and 
models tested, but with a very low sensitivity (between 
1.2% and 64.8%). 

As mentioned before, a large percentage of asymp-
tomatic patients already have abnormal findings on 
their CT scan images whose lesion patterns are similar 
to those found in symptomatic patients. In this sense, 
it is very important to detect these patterns in CT 
images to allow physicians to know if a patient has 
lung lesions and thus guide their treatment. 

The purpose of this investigation is to detect the pres-
ence or absence (i.e., a binary classification) of lung 
lesions due to COVID-19 in images originated from 
chest CT studies using deep learning. It could be use-
ful when it is desired to identify whether the lesions 
are disseminated in a large part of the lung tissue, 
indicating that the lesions occur in many slices of the 
CT study; this detection can even be valuable in 
assessing the evolution of lung tissue damage, and 
thus provide adequate treatment to the patients.

MATERIALS AND METHODS
The database used in this research corresponds to 

“COVID-19 CT Lung and Infection Segmentation 
Dataset” [20]. The images are in NIfTI (Neuroimaging 
Informatics Technology Initiative) format and were 

prepared through the collection of 20 public CT scans 
of patients with COVID-19 belonging to the Coronacases 
Initiative and Radiopaedia repositories. All cases pres-
ent COVID-19 infection in the lungs; however, the per-
centage of slices per patient showing abnormal find-
ings (related to infection) ranges from 0.01% to 59%. 
Abnormal findings on the chest CTs are: GGO, lung 
consolidation, pleural effusion, and mixed GGO with 
crazy-paving pattern or consolidation. 

Figure 1 shows different patterns of abnormal find-
ings present in the images of the database: a) GGO, b) 
consolidation, c) pleural effusion, d) GGO with cra-
zy-paving pattern, and e) GGO with consolidation, 
where GGO is indicated with green arrows, consolida-
tion is surrounded by segmented red ovals, pleural 
effusion is pointed with a yellow arrow, and crazy-pav-
ing pattern is enclosed by a blue line (also indicated by 
the blue arrow). In Figure 1, the images (a, b, c) belong 
to the Coronacases Initiative repository, and the images 
(d, e) correspond to the Radiopaedia repository.

FIGURE 1. Images with different abnormal findings 
from CT scans of the database. GGO is indicated with 

green arrows in a), d) and e); consolidation is enclosed 
by segmented red ovals in b) and e); pleural effusion 
is indicated with yellow arrow in c); and crazy-paving 

pattern is enclosed by a blue line in d).

There are images that present inconspicuous abnor-
malities that could be challenging for both an inexpe-
rienced radiologist and an automatic detection model. 
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For instance, Figure 2 shows an example of two images 
from a CT scan of the same patient. The slice in a) 
shows slight evidence of GGO, while in b) no abnor-
malities or lesions are observed. Thus, the detection 
system must be able to identify negligible lesions that 
commonly appear at the early stage of the disease.

FIGURE 2. Images obtained from a CT scan of a 
patient of the database. a) Slice with lesion (GGO 

indicated with green arrows), b) slice without lesion.

The resolution for the x and y axes is 512x512 pixels 
for the scans obtained from the Coronacases Initiative 
repository and 630x630 pixels for the Radiopaedia 
repository, except for case 5 "radiopaedia_14_85914_0" 
with 630x401 pixels. The CT scans have between 39 
and 418 slices, with a total of 3,520 images. The data-
base was grouped by counting images with lesions due 
to COVID-19 infection and without lesions, obtaining a 
total of 1,844 and 1,676, respectively.

The database of 20 patient scans was divided into 
training (80%, N = 16) and test (20%, N = 4) sets. The 
data were partitioned in such a way that there were the 
same number of cases from the Coronacases Initiative 
and Radiopaedia repositories in the training and test 
sets. The total of images (slices) was 3020 for training 
and 500 for testing. The purpose of this division was to 
have a balanced number of images between slices with 
and without lesions in both sets. A 15% (N = 483) of the 
training data was considered for internal validation 
during the training phase of the models used. Table 1 
shows the division of the data set into subsets: train-
ing, validation, and testing.

TABLE 1. Number of images for the training, validation, 
and test subsets (Coronacases + Radiopaedia repositories).

The CT volumes belonging to the Radiopaedia data-
base were previously pre-processed with a pulmonary 
window [-1250, 250] [19]. The image format was con-
verted from NIfTI to 8-bit grayscale png (Portable 
Network Graphics). The pixel values were normalized 
from [0-255] to [0-1]. After normalization, a resizing 
was applied to finally have images of size 128x128 
pixels (or 331x331 in the case of one of the networks 
used).

Implementation of 
convolutional neural networks

The algorithm was developed in Python. The imple-
mentation of the network models was carried out by 
means of transfer learning and subsequent fine-tun-
ing. Transfer learning is a technique that takes advan-
tage of existing knowledge to solve problems from a 
source domain to a destination domain in which, 
although the same task is not performed, both tasks 
have a certain similarity. Thus, the purpose is to solve 
a learning problem using the knowledge acquired by 
solving similar tasks [21]. On the other hand, the 
fine-tuning process applied in the context of deep 
learning model training is a way of applying learning 
transfer, but especially it consists of fine-tuning the 
weights of the pretrained model to fit to new observa-
tions. Transfer learning and fine-tuning techniques 
have been used in other investigations to identify and 
/ or differentiate patients with COVID-19 from patients 
without pulmonary pathology or with pneumonia 
using chest x-ray images, where this methodology has 

Tabla 1 
 

Images With 
lesions 

Without 
lesions Total 

Training 1339 1198 2537 

Internal 
validation 255 228 483 

Test 250 250 500 

Total 1844 1676 3520 

 
Tabla 2 

 
Images With 

lesions 
Without 
lesions Total 

Training 921 847 1768 

Internal 
validation 162 150 312 

Test 205 219 424 

Total 1288 1216 2504 

 
Tabla 3 

 
Images With 

lesions 
Without 
lesions Total 

Training 354 312 666 

Internal 
validation 67 59 126 

Test 72 75 147 

Total 493 446 939 

 
Tabla 4 

 
Model Acc  

(%) 
RE 
(%) 

SP 
(%) 

F1 
(%) 

AUC-
ROC 

RN50 70.8 77.6 64.0 72.7 0.749 

RN50 + 
F-T 68.5 72 64.8 69.5 0.733 

VGG16 79.6 93.6 63.6 81.4 0.880 

VGG16 + 
F-T 74.8 81.6 68.0 76.4 0.863 

VGG16 + 
F-T/SGD 77.4 86.0 68.8 79.2 0.872 

IRNV2 79.0 77.6 80.4 78.7 0.862 

IRNV2 + 
F-T 76.6 81.6 71.6 77.7 0.826 

NNL 73.0 78.0 68.0 74.3 0.818 

NNL +  
F-T 77.0 81.6 72.4 78.0 0.822 

Hard 
Voting 78.0 84.0 72.0 79.2 -- 

Soft 
Voting 78.6 84.4 72.8 79.8 0.867 
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provided accuracy values between 89% and 99% [22] [23] 

[24]. Also, Perumal et al. used the learning transfer 
technique with pre-trained models of the ResNet50, 
VGG16 and InceptionV3 networks to differentiate 
patients with COVID-19, viral and bacterial pneumo-
nia, and healthy patients. In their models, they com-
bined CT images and chest x-ray images where the 
best performance was achieved with the VGG16 model 
with an accuracy of 93% [25]. 

In this work, the transfer learning technique was 
implemented using four pretrained models belonging 
to the following networks: ResNet50 (RN50) [26], VGG16 
[27], InceptionResNetV2 (IRNV2) [28], and NASNetLarge 
(NNL) [29]. These networks were chosen due the well 
performance in large scale image recognition tasks, 
and their architectures and weights of pretrained net-
works are publicly available. Likewise, these networks 
have been used in numerous medical image classifica-
tion applications [18] [22] [23] [24] [30]. For each of these net-
works, they employed weights obtained from training 
using data from the ImageNet repository [31]. ImageNet 
corresponds to a dataset widely used for object recog-
nition purposes. Figure 3 shows the general configura-
tion of the architectures used for the construction of 
each model. The last fully connected layer from each 
base model (used for ImageNet data classification) was 
excluded, and the top of the architecture was config-
ured to classify only two classes as follows: An average 
subsampling layer (GlobalAveragePooling2D) was 
included, followed by a fully connected dense layer 
(Dense) of size 1024 with a ReLu activation function 
and, finally, a Dense layer with two neurons (one for 
each class) with a Softmax activation function. The 
input dimension was set to 128x128 pixels, except for 
the IRNV2 architecture that used 331x331 pixels.

 Initially, only the last added Dense layers of each 
model (the layers enclosed in the red segmented box 
in Figure 3) were trained for 100 epochs using the 
ADAM optimizer with a learning rate of 0.001. The 

categorical crossentropy loss was used as cost func-
tion. The weights of the trained models were saved for 
testing and subsequent training.

FIGURE 3. General diagram of the architecture 
of the models used in the training process.

Once the training process considering the last layers 
of the models was carried out, the fine-tuning (F-T) 
technique was applied, unfreezing a certain number 
of layers at the end of the base model (of each network) 
for training together with the layers trained in the pre-
vious stage; In Figure 3, the layers enclosed by the 
dotted blue box are those involved in the fine-tuning 
of the models. For the RN50 architecture, the layers 
were unfrozen from the fifth convolutional block 
onwards; for the VGG16, the unfrozen of the layers 
started from the fourth block; in the IRNV2, it started 
from the layer 547th; and in the NNL architecture, it 
started from the layer 902nd. For training with F-T, the 
learning rate of the optimizer was decreased to 0.0001 
using the ADAM optimizer. In summary, eighth mod-
els were built, two for each network (models without 
and with F-T). Also, with the goal to observe the effect 
caused by a different optimizer in the learning pro-
cess, the stochastic descending gradient (SGD) opti-
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mizer was applied to the VGG16 network during the 
fine-tuning phase. Finally, the models were evaluated 
using five metrics: accuracy (Acc), recall (RE), specific-
ity (SP), F1-Score (F1) and AUC-ROC.

Majority voting ensemble
In terms of classification, majority voting (hard vot-

ing) is an ensemble machine learning model that com-
bines the predictions of multiple models. It seeks to 
optimize the performance of the classification based 
on consensus, which takes into account the sum of the 
votes of independent models. The hard voting ensem-
ble used the five models that had the highest accuracy 
in the validation set: RN50, VGG16, IRNV2, IRNV2 
with fine-tuning and NNL without fine-tuning. 

A variant of the hard voting arrangement is the ensem-
ble of soft voting, which seeks to get a classification 
based on the probability values of belonging to a class 
given by the classifiers used. The labeling (0 or 1) is 
done after all the probabilities of the models have been 
considered. The models used for this ensemble are the 
same as those ones used in the hard voting scheme.

Creation and evaluation of 
models with separate data repositories

As an additional experimentation, the division of the 
data by sources (Coronacases Initiative and 
Radiopaedia repositories) was proposed in order to 
assess the performance when evaluating the models 
with the data from the repositories separately. For 
these tests, both repositories were inspected with the 
intention of finding and removing low-quality images. 
In this process, 77 slices with high opacity were 
excluded, possibly due to an inadequate reconstruc-
tion of the tomographic image. Finally, there were 
3443 images where 2504 belong to Coronacases and 
939 to Radiopaedia. The organization of the training 
and test sets for the case of Coronacases consisted of 
using eight scans (2,080 slices) and two scans (424 
slices) for training and testing, respectively. In the 

case of Radiopaedia, seven scans were used for train-
ing (792 slices) and three for testing (147 slices). For 
both cases, 15% of the training data was considered for 
internal validation. Tables 2 and 3 specify the number 
of cases for training, validation and testing of the 
models with the separate data repositories.

TABLE 2. Number of images for the training, validation, 
and test subsets for the Coronacases repository.

Tabla 1 
 

Images With 
lesions 

Without 
lesions Total 

Training 1339 1198 2537 

Internal 
validation 255 228 483 

Test 250 250 500 

Total 1844 1676 3520 

 
Tabla 2 

 
Images With 

lesions 
Without 
lesions Total 

Training 921 847 1768 

Internal 
validation 162 150 312 

Test 205 219 424 

Total 1288 1216 2504 

 
Tabla 3 

 
Images With 

lesions 
Without 
lesions Total 

Training 354 312 666 

Internal 
validation 67 59 126 

Test 72 75 147 

Total 493 446 939 

 
Tabla 4 

 
Model Acc  

(%) 
RE 
(%) 

SP 
(%) 

F1 
(%) 

AUC-
ROC 

RN50 70.8 77.6 64.0 72.7 0.749 

RN50 + 
F-T 68.5 72 64.8 69.5 0.733 

VGG16 79.6 93.6 63.6 81.4 0.880 

VGG16 + 
F-T 74.8 81.6 68.0 76.4 0.863 

VGG16 + 
F-T/SGD 77.4 86.0 68.8 79.2 0.872 

IRNV2 79.0 77.6 80.4 78.7 0.862 

IRNV2 + 
F-T 76.6 81.6 71.6 77.7 0.826 

NNL 73.0 78.0 68.0 74.3 0.818 

NNL +  
F-T 77.0 81.6 72.4 78.0 0.822 

Hard 
Voting 78.0 84.0 72.0 79.2 -- 

Soft 
Voting 78.6 84.4 72.8 79.8 0.867 

 
 
 
 
 

TABLE 3. Number of images for the training, validation, 
and test subsets for the Radiopaedia repository.

Tabla 1 
 

Images With 
lesions 

Without 
lesions Total 

Training 1339 1198 2537 

Internal 
validation 255 228 483 

Test 250 250 500 

Total 1844 1676 3520 

 
Tabla 2 

 
Images With 

lesions 
Without 
lesions Total 

Training 921 847 1768 

Internal 
validation 162 150 312 

Test 205 219 424 

Total 1288 1216 2504 

 
Tabla 3 

 
Images With 

lesions 
Without 
lesions Total 

Training 354 312 666 

Internal 
validation 67 59 126 

Test 72 75 147 

Total 493 446 939 

 
Tabla 4 

 
Model Acc  

(%) 
RE 
(%) 

SP 
(%) 

F1 
(%) 

AUC-
ROC 

RN50 70.8 77.6 64.0 72.7 0.749 

RN50 + 
F-T 68.5 72 64.8 69.5 0.733 

VGG16 79.6 93.6 63.6 81.4 0.880 

VGG16 + 
F-T 74.8 81.6 68.0 76.4 0.863 

VGG16 + 
F-T/SGD 77.4 86.0 68.8 79.2 0.872 

IRNV2 79.0 77.6 80.4 78.7 0.862 

IRNV2 + 
F-T 76.6 81.6 71.6 77.7 0.826 

NNL 73.0 78.0 68.0 74.3 0.818 

NNL +  
F-T 77.0 81.6 72.4 78.0 0.822 

Hard 
Voting 78.0 84.0 72.0 79.2 -- 

Soft 
Voting 78.6 84.4 72.8 79.8 0.867 

 
 
 
 
 

The same criteria (the five models that had the highest 
accuracy in the validation set) were used in the selec-
tion of models for the hard voting and soft voting 
ensembles. For Coronacases, the best models were 
RN50, VGG16, VGG16 with fine-tune, IRNV2 with fine-
tune and NNL. In the case of Radiopaedia, RN50, IRNV2, 
NNL, VGG16 (all the above with fine-tune) and VGG16 
with fine-tune and the SGD optimizer were used.

RESULTS AND DISCUSSION
Table 4 shows the performance of the trained archi-

tectures in their different stages (without and with 
F-T). They were evaluated with the test set of the 
"COVID-19 CT Lung and Infection Segmentation" data-
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base (including both repositories). It is observed that 
the VGG16 architecture presents the highest values of 
accuracy and recall, however, the specificity metric is 
slightly lower than other models, and the Inception-
ResNetV2 network presents the best performance in 
this metric. The VGG16 model has the highest F1-score 
value above 81%, followed by the model implemented 
with soft voting. The highest value of the AUC-ROC 
(0.880) is also obtained by the VGG16 model. 

TABLE 4. Performance of the models evaluated 
with the test set (Coronacases + Radiopaedia), where the 

best performances of the models are bold remarked.

Tabla 1 
 

Images With 
lesions 

Without 
lesions Total 

Training 1339 1198 2537 

Internal 
validation 255 228 483 

Test 250 250 500 

Total 1844 1676 3520 

 
Tabla 2 

 
Images With 

lesions 
Without 
lesions Total 

Training 921 847 1768 

Internal 
validation 162 150 312 

Test 205 219 424 

Total 1288 1216 2504 

 
Tabla 3 

 
Images With 

lesions 
Without 
lesions Total 

Training 354 312 666 

Internal 
validation 67 59 126 

Test 72 75 147 

Total 493 446 939 

 
Tabla 4 

 
Model Acc  

(%) 
RE 
(%) 

SP 
(%) 

F1 
(%) 

AUC-
ROC 

RN50 70.8 77.6 64.0 72.7 0.749 

RN50 + 
F-T 68.5 72 64.8 69.5 0.733 

VGG16 79.6 93.6 63.6 81.4 0.880 

VGG16 + 
F-T 74.8 81.6 68.0 76.4 0.863 

VGG16 + 
F-T/SGD 77.4 86.0 68.8 79.2 0.872 

IRNV2 79.0 77.6 80.4 78.7 0.862 

IRNV2 + 
F-T 76.6 81.6 71.6 77.7 0.826 

NNL 73.0 78.0 68.0 74.3 0.818 

NNL +  
F-T 77.0 81.6 72.4 78.0 0.822 

Hard 
Voting 78.0 84.0 72.0 79.2 -- 

Soft 
Voting 78.6 84.4 72.8 79.8 0.867 

 
 
 
 
 

A good classification of CT slices with COVID-19 
lesions is observed, with an accuracy equal to or 
greater than 78% in four of the nine models evaluated. 
It is also important to mention that only one of the 
models presents a SP greater than 80%, which indi-
cates that in most models, there is a tendency to mis-
classify the negative class (images without lesions). 

Figure 4 shows the accuracy performance of the nine 
models, which were trained with the training set (that 
includes data from both repositories) but evaluated 

with the test sets of each repository independently. 
For purposes of better identification, data from the 
Coronacases Initiative repository is named as DB1 and 
data from Radiopaedia named as DB2. As it is observed 
in Figure 4, the accuracy in the classification of the 
DB1 images was superior in six of the nine models 
evaluated.

FIGURE 4. Accuracy of the models evaluated with 
a mixed set of data (DB1+DB2), and independent 

data sets (DB1 and DB2).

It can be observed from Figure 4 that the models do 
not show a consistent fit to the data from both reposi-
tories separately; this may be due to the lung window 
preprocessing previously applied to the images of the 
Radiopaedia repository. 

Table 5 presents the performance evaluation of the 
models trained only using data from the Coronacases 
repository. The VGG16 architecture (without F-T) 
shows the best performance with 88% of accuracy, 
90.2% of recall, a specificity greater than 85% and an 
F1-score above 87% (AUC-ROC of 0.929). The IRNV2 + 
F-T network presents a good assessment in all the met-
rics evaluated, just below, in average, to the VGG16 
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model. On the other hand, even though the ResNet50 
network obtains an excellent recall of 98.5%, its spec-
ificity is around 57% making it unreliable to classify 
cases without lesions.

TABLE 5. Evaluation of the models with data
from the Coronacases Initiative repository. TABLE 6. Evaluation of the models using data

from the Radiopaedia repository.
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Finally, Table 6 shows the performance evaluation of 
the models trained only using data from the 
Radiopaedia repository. As observed, the model built 
with the soft voting ensemble presents the best perfor-
mance, reaching an accuracy of 84.4%, a high recall of 
94.4% and the highest F1-score of 85.5%, with moder-
ate specificity higher than 74%. The models VGG16 
and VGG16+F-T (using the ADAM optimizer), obtain 
the greatest specificity compared with the rest of the 
networks; however, they present a low recall making 
such models not appropriate to detect cases with lung 
lesions in CT images.

In general terms, training and testing with separated 
data repositories show a better performance in the 
models evaluated in this study, which is evidenced by 
the maximum accuracy values obtained with the 

Coronacases repository (88% in the VGG16 model), 
and Radiopaedia repository (84.4% in the soft voting 
model) when compared with the models trained using 
data from both repositories together (79.6% for the 
VGG16 model). 

Other investigations that seek to identify the pres-
ence of lesions on CT images using transfer learning 
have reported an accuracy of 99%. Such is the case of 
Ahuja et al. [32], who used different versions of the 
ResNet and the SqueezeNet networks; They worked 
with a data set of 746 images of which 349 showed 
signs of COVID-19 lesions, obtained from 216 patients. 
However, unlike to our research, where all images 
from the CT studies were used and all patients had the 
disease, they did not use the full CT study for their 
experiments, just a few selected images of patients 
with the infection. In a similar task, Dey et al. [33] used 
an algorithm based on a segmentation and feature 
extraction scheme in CT images to detect COVID-19 
lesions. Testing different classifiers, its algorithm 
reached a maximum accuracy of 87.75%.
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It is important to mention that the studied networks 
presented a high classification error or misclassifica-
tion in slices that were located at the beginning or at 
the end of the scans (at the cephalocaudal ends). It 
could be due to the fact that these images show a 
reduced area of lung tissue while the rest of the tissue 
can generate structures similar to abnormality find-
ings suggesting a pulmonary lesion. An example of 
this issue can be seen in Figure 5. Here, two cases of 
slices located in the apex region of the upper lobes of 
the lungs are observed. The image in a) shows signs of 
consolidation in the left lung (enclosed with a seg-
mented red oval), and the image in b) does not show 
signs of abnormality, however, in both cases the mod-
els classify the images with the presence of lesions. 

FIGURE 5. CT images from the apex region of 
the upper lobes of the lungs. a) CT slice that 

presents consolidation in the right lung (enclosed 
with a red segmented red oval), b) CT slice that 

does not show abnormal signs.

CONCLUSIONS
The objective of the present work was to detect the 

presence or absence of lung lesions in chest computed 
tomography images of patients with COVID-19 infec-
tion using deep learning models. In our study, the 
VGG16 model using the Coronacases Initiative reposi-
tory presented the best results with an accuracy of 88%, 
AUC-ROC of 0.929 and F1-score of 87.8%. On the other 
hand, the soft voting ensemble, using the Radiopaedia 
repository, reached an accuracy of 84.4%, AUC-ROC of 
0.92 and F1-score of 85.5%. The results of both models 
represent a good trade-off between the recall, specific-

ity and precision of the classifiers. It should be remarked 
that the management of the repositories, used inde-
pendently of each other, improved the adjustment of 
the models, showing a greater generalization.

The model VGG16 with FT reached an accuracy of 
80.3% using the Radiopaedia repository, however this 
performance was improved using combination models 
such as the soft voting and hard voting ensembles, with 
84.4% and 83% of accuracy, respectively (both models 
with a high recall). It must be noted that this combina-
tion scheme was only satisfactory for this repository. 

This research demonstrates that deep learning mod-
els can be useful to detect lung lesions of COVID-19 
with high sensitivity and specificity for diagnosis; it 
can be valuable when considering the possible high 
false positive rate of clinical tests. In this way, an auto-
matic detection model can serve as reference in radiol-
ogy, allowing a quick localization of the lesion from a 
CT study with greater precision.

We must emphasize that in the present research, all 
the CT scans of the database included patients with a 
positive diagnosis of COVID-19, so the abnormality 
patterns found in the images are assumed to be indic-
ative of lesions due to this disease. This represents a 
limitation in the present study since certainly other 
lung diseases such as interstitial pneumonia, sarcoid-
osis, alveolar proteinosis, carcinoma, etc., can produce 
similar patterns in CT scans to those found in patients 
with COVID-19 [10] [34]. Therefore, as future work, it is 
necessary to advance in this research to include 
patients with different lung diseases and classify the 
lesions according to their pathology of origin.
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