Development of Polymeric Materials as Hydrogels with Curcumin for Skin Tissue Regeneration
DOI:
https://doi.org/10.17488/RMIB.45.3.6Keywords:
biopolymers, curcumin, chronic wounds, hydrogelsAbstract
The aim of this review is to highlight advances in the development of hydrogels and the use of curcumin in the treatment of chronic wounds. Chronic wounds, such as pressure, vascular, neuropathic and neoplastic ulcers, represent a significant global health problem, accounting for 1-2 % of all existing wounds, and in Mexico alone, 9.4 % of the adult population suffers from chronic wounds, exacerbated by complications of diabetes mellitus. This systematic review used the virtual library OMICsearch and the search engine Mendeley, considering research that included some of the keywords such as biopolymers, curcumin, chronic wounds and hydrogels, so any that were not related to these and that did not fall within the search period between 2006 and 2024 were discarded. We found from 51 selected articles that curcumin, a phytopharmaceutical with antioxidant, anti-inflammatory and proangiogenic properties, has been shown to be effective in wound healing. Moreover, hydrogels offer significant advantages in wound treatment due to their ability to provide spatiotemporal control in the healing stages, regulate wound microenvironments and release active molecules in a controlled manner. In conclusion, although the skin is the largest organ of the body and commonly affected by wounds, wounds can also occur in other areas due to surgery, cancerous tumors and ulcers of various etiologies. The development of curcumin hydrogels not only focuses on skin wounds, but also addresses inflammatory diseases, tumors, liver diseases, asthma and osteoarthritis, with pharmaceutical and cosmetic applications.
Downloads
References
E. Rezvani Ghomi, E. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, S. Ramakrishna, “Wound dressings: Current advances and future directions,” J. Appl. Polym. Sci., vol. 136, 2019, art. no. 47738, doi: https://doi.org/10.1002/app.47738
T. H. Park, S. Lee, R. Amatya, P. Maharjan, et al., “Development and characterization of a superabsorbing hydrogel film containing Ulmus davidiana var. Japonica root bark and pullulan for skin wound healing,” Saudi Pharm. J., vol. 28, no. 7, pp. 791–802, 2020, doi: https://doi.org/10.1016/j.jsps.2020.05.007
E. Esteva, “El tratamiento de las heridas. Tipos de apósitos y antisépticos,” OFFARM, vol. 25, no. 8, pp. 54-60, 2006.
C. C. Becerra G., M. P. García A., Y. D. Reyes M., M. G. Huertas, “Biopelículas bacterianas en heridas crónicas,” Rev. Salud Bosque, vol. 9, no. 1, pp. 47-61, 2019, doi: https://doi.org/10.18270/rsb.v9i1.2643
G. Vela-Anaya, E. M. Stegensek-Mejía, and C. Leija-Hernández, “Características epidemiológicas y costos de la atención de las heridas en unidades médicas de la Secretaría de Salud,” Rev. Enferm. Inst. Mex. Seguro Soc., vol. 26, no. 2, pp. 105-114, 2018. [En línea]. Disponible en: https://www.medigraphic.com/pdfs/enfermeriaimss/eim-2018/eim182g.pdf
S. Bashir, M. Hina, J. Iqbal, A. H. Rajpar, et al., “Fundamental concepts of hydrogels: Synthesis, properties, and their applications,” Polymers, vol. 12, no. 11, 2020, art. no. 2702, doi: https://doi.org/10.3390/polym12112702
N. Van Long, B. T. Ha, A. V. Tuan, H. Van Luong, et al., “Phytosomal nanoparticles preparation of curcuminoids to enhance cellular uptake of curcuminoids on breast cancer cell line MCF-7,” Pharmacogn. J., vol. 11, no. 5, pp. 1037–1045, 2019, doi: http://dx.doi.org/10.5530/pj.2019.11.163
B. Higashida, Ciencias de la Salud, México: Mc Graw Hill, 2013.
R. Falabella Falabella, J. V. Chaparro, M. I. Barona Cabal, Dermatología: Fundamentos de medicina, 8ª ed. (8a edición). Medellín, Colombia: Fondo Editorial CIB, 2017.
M. I. Chaves-Rodríguez, L. A. Calvo-Castro, R. Alva-rado-Meza, O. Madrigal-Monge, A. Ulloa-Fernández, C. Centeno-Cerdas, “Sustitutos e injertos de piel desarrollados por ingeniería de tejidos Skin grafts and substitutes developed by Tissue Engineering,” Rev. Tecnol. Marcha, vol. 28, no. 5, pp. 46-57, 2014. doi: http://dx.doi.org/10.18845/tm.v28i5.2219
M. Bahadoran, A. Shamloo, Y. D. Nokoorani, “Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing,” Sci. Rep., vol. 10, no. 1, 2020, art. no. 7342, doi: https://doi.org/10.1038/s41598-020-64480-9
S. Alven, V. Khwaza, O. O. Oyedeji, B. A. Aderibigbe, “Polymer-based scaffolds loaded with aloe vera extract for the treatment of wounds,” Pharmaceutics, vol. 13, no. 7, 2021, art. no. 961, doi: https://doi.org/10.3390/pharmaceutics13070961
J. Ledesma-García, G. Orozco, R. Antaño, L. A. Godínez, “Preparation and study of cellulose acetate membranes modified with linear polymers covalently bonded to starburst polyamidoamine dendrimers,” J. Appl. Polym. Sci., vol. 110, no. 5, pp. 2898–2906, 2008, doi: https://doi.org/10.1002/app.28833
R. Naomi, H. Bahari, P. M. Ridzuan, F. Othman, “Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review,” Polymers, vol. 13, no. 14, 2021, art. no. 2319, doi: https://doi.org/10.3390/polym13142319
M. A. Matica, F. L. Aachmann, A. Tøndervik, H. Sletta, and V. Ostafe, “Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action,” Int. J. Mol. Sci., vol. 20, no. 23, art. no. 5889, 2019, doi: https://doi.org/10.3390/ijms20235889
C. Cinthura, V. V. Priya, R. Gayathri, “A study on the effect of hyaluronic acid on tissue repair proteins,” Drug Invent. Today, vol. 12, no. 10, pp. 2212-2216, 2019.
P. Olczyk, Ł. Mencner, K. Komosinska-Vassev, “Diverse Roles of Heparan Sulfate and Heparin in Wound Repair,” Biomed. Res. Int., vol. 2015, 2015, art. no. 549417, doi: https://doi.org/10.1155/2015/549417
W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Brown, “Microbial cellulose - The natural power to heal wounds,” Biomaterials, vol. 27, no. 2, pp. 145–151, 2006, doi: https://doi.org/10.1016/j.biomaterials.2005.07.035
J. Yin, L. Wei, N. Wang, X. Li, M. Miao, “Efficacy and safety of adjuvant curcumin therapy in ulcerative colitis: A systematic review and meta-analysis,” J. Ethnopharmacol., vol. 289, 2022, art. no. 115041, doi: https://doi.org/10.1016/j.jep.2022.115041
Y. Wang, Y. Wang, N. Cai, T. Xu, F. He, “Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies,” Int. Immunopharmacol., vol. 96, 2021, art. no. 107600, doi: https://doi.org/10.1016/j.intimp.2021.107600
M. Ashrafizadeh, A. Zarrabi, K. Hushmandi, V. Zarrin, et al., “Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review,” Front. Pharmacol., vol. 11, 2020, art. no. 585413, doi: https://doi.org/10.3389/fphar.2020.585413
R. L. Thangapazham, S. Sharad, R. K. Maheshwari, “Phytochemicals in Wound Healing,” Adv. Wound Care (New Rochelle), vol. 5, no. 5, pp. 230–241, 2016, doi: https://doi.org/10.1089/wound.2013.0505
K. Morshedi, S. Borran, M. S. Ebrahimi, M. J. Masoud Khooy, et al., “Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review,” vol. 35, no. 9, pp. 4834-4897, doi: https://doi.org/10.1002/ptr.7119
B. Saifi, S. M. Haftcheshmeh, M. Feligioni, E. Izadpanah, et al., “An overview of the therapeutic effects of curcumin in reproductive disorders with a focus on the antiinflammatory and immunomodulatory activities,” Phytother. Res., vol. 36, no. 2, pp. 808–823, 2022, doi: https://doi.org/10.1002/ptr.7360
E. J. Lee, J. Choi, H. J. Lim, D. Yoon, et al., “3D-bioprinted cell-laden blood vessel with dual drug delivery nanoparticles for advancing vascular regeneration,” Int. J. Bioprint., vol. 10, no. 2, 2024, art. no. 1857, doi: https://doi.org/10.36922/ijb.1857
J. Li, L. Chen, C. Li, Y. Fan, et al., “Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury,” Theranostics, vol. 12, no. 8, pp. 3407–3419, 2022, doi: https://doi.org/10.7150/thno.70701
W. Hong, F. Guo, N. Yu, S. Ying, et al., “A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment,” Drug Des. Devel Ther., vol. 15, pp. 2843–2855, 2021, doi: https://doi.org/10.2147/dddt.s320119
V. Changizi, V. Gharekhani, E. Motavaseli, “Co-treatment with ginsenoside 20(S)-rg3 and curcumin increases radiosensitivity of mda-mb-231 cancer cell line,” Iran J. Med. Sci., vol. 46, no. 4, pp. 291–297, 2021, doi: https://doi.org/10.30476/ijms.2020.83977.1334
I. M. Adel, M. F. ElMeligy, A. F. A. Abdelkhalek, N. A. Elkasabgy, “Design and characterization of highly porous curcumin loaded freeze-dried wafers for wound healing,” Eur. J. Pharm. Sci., vol. 164, 2021, art. no. 105888, doi: https://doi.org/10.1016/j.ejps.2021.105888
M. Heng, “Topical Curcumin: A Review of Mechanisms and uses in Dermatology,” Int. J. Dermatol. Clin. Res., vol. 3, no. 1, pp. 010–017, 2017, doi: https://dx.doi.org/10.17352/2455-8605.000020
H. Mirzaei, A. Shakeri, B. Rashidi, A. Jalili, Z. Banikazemi, A. Sahebkar, “Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies,” Biomed. Pharmacother., vol. 85, pp. 102-112, doi: https://doi.org/10.1016/j.biopha.2016.11.098
M. L. Manca, I. Castangia, M. Zaru, A. Nácher, et al., “Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring,” Biomaterials, vol. 71, pp. 100–109, 2015, doi: https://doi.org/10.1016/j.biomaterials.2015.08.034
A. E. Krausz, B. L. Adler, V. Cabral, M. Navati, et al., “Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent,” Nanomedicine, vol. 11, no. 1, pp. 195–206, 2015, doi: https://doi.org/10.1016/j.nano.2014.09.004
R. D. F. Soares, N. G. N. Campos, G. P. Ribeiro, B. C. C. Salles, et al., “Development of a chitosan hydrogel containing flavonoids extracted from Passiflora edulis leaves and the evaluation of its antioxidant and wound healing properties for the treatment of skin lesions in diabetic mice,” J. Biomed. Mater. Res. A, vol. 108, no. 3, pp. 654–662, 2020, doi: https://doi.org/10.1002/jbm.a.36845
E. H. Fragal, V. H. Fragal, E. P. Silva, A. T. Paulino, et al., “Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications,” Carbohydr. Polym., vol. 292, 2022, art. no. 119665, doi: https://doi.org/10.1016/j.carbpol.2022.119665
B. Kovacevic, M. Jones, C. Ionescu, D. Walker, et al., “The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications,” Biomaterials, vol. 283, 2022, art. no. 121459, doi: https://doi.org/10.1016/j.biomaterials.2022.121459
S. Pourshahrestani, E. Zeimaran, N. A. Kadri, N. Mutlu, A. R. Boccaccini, “Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing,” Adv. Healthc. Mater., vol. 9, no. 20, 2020, art. no. e2000905, doi: https://doi.org/10.1002/adhm.202000905
T. Zhu, D. Liang, Q. Zhang, W. Sun, X. Shen, “Curcumin-encapsulated fish gelatin-based microparticles from microfluidic electrospray for postoperative gastric cancer treatment,” Int. J. Biol. Macromol., vol. 254, 2024, art. no.127763, doi: https://doi.org/10.1016/j.ijbiomac.2023.127763
B. Veerapandian, T. K. R. Selvaraj, S. R. Shanmugam, K. K. Sarwareddy, K. P. Mani, P. Venkatachalam, “In-vitro drug release and stability assessment of tailored levan–chitosan biocomposite hydrogel,” Iran. Polym. J., vol. 33, no. 1, pp. 11–23, 2024, doi: https://doi.org/10.1007/s13726-023-01229-x
Q. Lan, J. Cao, X. Bi, X. Xiao, D. Li, Y. Ai, “Curcumin-primed periodontal ligament stem cells-derived extracellular vesicles improve osteogenic ability through the Wnt/β-catenin pathway,” Front. Cell Dev. Biol., vol. 11, 2023, art. no. 1225449, doi: https://doi.org/10.3389/fcell.2023.1225449
S. L. Tomić, M. M. Babić Radić, J. S. Vuković, V. V. Filipović, J. Nikodinovic-Runic, M. Vukomanović, “Alginate-Based Hydrogels and Scaffolds for Biomedical Applications,” Mar. Drugs., vol. 21, no. 3, 2023, art. no. 177, doi: https://doi.org/10.3390/md21030177
A. Nawaz, A. Farid, M. Safdar, M. S. Latif, et al., “Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers,” Gels, vol. 8, no. 6, 2022, art. no. 384, doi: https://doi.org/10.3390/gels8060384
M. Bashash, M. Varidi, J. Varshosaz, “Composite Hydrogel-Embedded Sucrose Stearate Niosomes: Unique Curcumin Delivery System,” Food Bioproc. Tech., vol. 15, no. 9, pp. 2020–2034, 2022, doi: https://doi.org/10.1007/s11947-022-02857-6
F. Islam, S. Y. Wong, X. Li, M. T. Arafat, “Pectin and mucin modified cellulose-based superabsorbent hydrogel for controlled curcumin release,” Cellulose, vol. 29, no. 9, pp. 5207–5222, 2022, doi: http://dx.doi.org/10.1007/s10570-022-04600-y
M. Heidarifard, E. Taghavi, N. Anarjan, “Preparation of Nano-Emulsion-Based Hydrogels Conjugated Curcumin as Model Functional Lipid Bioactive Compound,” J. Am. Oil Chem. Soc., vol. 98, no. 6, pp. 697–709, 2021, doi: https://doi.org/10.1002/aocs.12473
A. HaqAsif, R. R. Karnakar, N. Sreeharsha, et al., “pH and Salt Responsive Hydrogel based on Guar Gum as a Renewable Material for Delivery of Curcumin: A Natural Anti-Cancer Drug,” J. Polym. Environ., vol. 29, no. 6, pp. 1978–1989, 2021, doi: https://doi.org/10.1007/s10924-020-01934-1
S. Bhubhanil, C. Talodthaisong, M. Khongkow, K. Namdee, et al., “Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels,” Sci. Rep., vol. 11, no. 1, 2021, art. no. 21836, doi: https://doi.org/10.1038/s41598-021-01262-x
X. J. Qi, X. Y. Liu, L. M. Y. Tang, P. F. Li, F. Qiu, A. H. Yang, “Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery,” Pharm. Dev. Technol., vol. 25, no. 3, pp. 316–325, 2020, doi: https://doi.org/10.1080/10837450.2019.1686524
F. I. Abo El-Ela, K. H. Hussein, H. A. El-Banna, A. Gamal, et al., “Treatment of Brucellosis in Guinea Pigs via a Combination of Engineered Novel pH-Responsive Curcumin Niosome Hydrogel and Doxycycline-Loaded Chitosan–Sodium Alginate Nanoparticles: an In Vitro and In Vivo Study,” AAPS PharmSciTech, vol. 21, no. 8, 2020, art. no. 325, doi: https://doi.org/10.1208/s12249-020-01833-7
M. Momin, S. Kurhade, P. Khanekar, S. Mhatre, “Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing,” J. Wound Care, vol. 25, no. 6, pp. 364–372, 2016, doi: https://doi.org/10.12968/jowc.2016.25.6.364
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ingenieria Biomedica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.