Development of a Frequent Exchange Coordinate Algorithm for Detection of Precordial Electrode Exchange during ECG based on Error and Correlation Parameters
DOI:
https://doi.org/10.17488/RMIB.45.3.7Keywords:
12-lead ECG, correlation, error estimators, electrode exchangeAbstract
In order to develop a method for detecting precordial electrode exchange, a frequent exchange coordinate (FEC) algorithm was implemented, that identified the minimum correlation points necessary to detect a specific electrode exchange, and its performance was tested with error estimators (mean square error and percent mean square difference). Validation of the algorithm was performed using the k-fold cross-validation technique on the PTB, Chapman University and Shaoxing Hospital, PTB XL, and Georgia 12-lead ECG Challenge databases. The results indicate averages of Se= 99.16 % and Sp= 99.38 % (MSE), Se= 95.38 % and Sp= 99.47 % (PRD), Se= 98.44 % and Sp= 99.49 % (Pearson), Se= 98.45 % and Sp= 99.48 % (modified Pearson), Se= 95.39 % and Sp= 99.81 % (Bray Curtis), Se= 80.00 % and Sp= 97.84 % (correlation sign). MSE presents a significant improvement in execution time (61.49µs N=1000), representing, on average, 44.99 % of the execution time for Pearson correlation. The frequent exchange coordinates algorithm was then validated using signal analysis with the mean square error (MSE), representing a good alternative to detect electrode exchange in real time, easy to implement, and low computational cost.
Downloads
References
D. M. F. Palhares, M. S. Marcolino, T. M. M. Santos, J. L. P. da Silva, et al., “Normal limits of the electrocardiogram derived from a large database of Brazilian primary care patients,” BMC Cardiovasc. Disord., vol. 17, 2017, art. no. 152, doi: https://doi.org/10.1186/s12872-017-0572-8
A. Hadjiantoni, K. Oak, S. Mengi, J. Konya, T. Ungvari, “Is the Correct Anatomical Placement of the Electrocardiogram Electrodes Essential to Diagnosis in the Clinical Setting: a Systematic Review,” Cardiol. Cardiovasc. Med., vol. 5, no. 2, pp. 182-200, 2021, doi: https://www.doi.org/10.26502/fccm.92920192
R. R. Bond, D. D. Finlay, C. D. Nugent, C. Breen, D. Guldenring, and M. J. Daly, “The effects of electrode misplacement on clinicians’ interpretation of the standard 12-lead electrocardiogram,” Eur. J. Intern. Med., vol. 23, no. 7, pp. 610-615, 2012, doi: https://doi.org/10.1016/j.ejim.2012.03.011
C. Han, R. E. Gregg, and S. Babaeizadeh, “Automatic detection of ECG lead wire interchange for conventional and Mason-Likar lead systems,” in Computing in Cardiology 2014, Cambridge, MA, USA, 2014, pp. 145-148.
H. Xia, G. A. Garcia, and X. Zhao, “Automatic detection of ECG electrode misplacement: a tale of two algorithms,” Physiol. Meas., vol. 33, 2012, art. no. 1549, doi: https://doi.org/10.1088/0967-3334/33/9/1549
J. A. Kors and G. van Herpen, “Accurate automatic detection of electrode interchange in the electrocardiogram,” The Am. J. Cardiol., vol. 88, no. 4, pp. 396-399, 2001, doi: https://doi.org/10.1016/S0002-9149(01)01686-1
K. Rjoob, R. Bond, D. Finlay, V. McGilligan, et al., “Machine learning techniques for detecting electrode misplacement and interchanges when recording ECGs: a systematic review and meta analysis,” J. Electrocardiol., vol. 62, pp. 116-123, 2020, doi: https://doi.org/10.1016/j.jelectrocard.2020.08.013
J. Kors and G. van Herpen, “A novel method to detect electrocardiographic electrode interchanges,” Journal of Electrocardiology, vol. 33, pp. 209-210, 2000, doi: https://doi.org/10.1054/jelc.2000.20352
K. Rjoob, R. Bond, D. Finlay, V. McGilligan, et al., “Data driven feature selection and machine learning to detect misplaced V1 and V2 chest electrodes when recording the 12‑lead electrocardiogram,” J. Electrocardiol., vol. 57, pp. 39-43, 2019, doi: https://doi.org/10.1016/j.jelectrocard.2019.08.017
R. E. Gregg, E. W. Hancock, and S. Babaeizadeh, “Detecting ECG limb lead wire interchanges involving the right leg lead-wire,” in Computing in Cardiology 2017, Rennes, France, 2017, doi: https://doi.org/10.22489/CinC.2017.014-061
B. Hede´n, M. Ohlsson, L. Edenbrandt, R. Rittner, O. Pahlm, and C. Peterson, “Artificial neural networks for recognition of electrocardiographic lead reversal,” Am. J. Cardiol., vol. 75, no. 14, pp. 929-933, 1995, doi: https://doi.org/10.1016/S0002-9149(99)80689-4
B. Hede´n, M. Ohlsson, H. Holst, M. Mjöman, et al., “Detection of frequently overlooked electrocardiographic lead reversals using artificial neural networks,” Am. J. Cardiol., vol. 78, no. 5, pp. 600-604, 1996, doi: https://doi.org/10.1016/S0002-9149(96)00377-3
K. Rjoob, R. Bond, D. Finlay, V. McGilligan, S. J. Leslie, A. Iftikhar, and A. Peace, “Machine learning improves the detection of misplaced v1 and v2 electrodes during 12-lead electrocardiogram acquisition,” in 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. 1-4, doi: https://doi.org/10.22489/CinC.2019.035
J. de Bie, D. W. Mortara, and T. F. Clark, “The development and validation of an early warning system to prevent the acquisition of 12-lead resting ECGs with interchanged electrode positions,” J. Electrocardiol., vol. 47, no. 6, pp. 794-797, 2014, doi: https://doi.org/10.1016/j.jelectrocard.2014.08.015
G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: Wireless communication meets machine learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19-25, 2020, doi: https://doi.org/10.1109/MCOM.001.1900103
Khanzode, K. C. A., Sarode, R. D, “Advantages and Disadvantages of Artificial Intelligence and Machine Learning: A Literature Review,” Int. J. Libr. Inf. Sci., vol. 9, no. 1, 30-36, 2020, doi: https://doi.org/10.17605/OSF.IO/GV5T4
I. Jekova, V. Krasteva, R. Leber, R. Schmid, et al., “Interlead correlation analysis for automated detection of cable reversals in 12/16-lead ECG,” Comput. Methods Programs Biomed., vol. 134, pp. 31-41, 2016, doi: https://doi.org/10.1016/j.cmpb.2016.06.003
A. Medina, N. Lopez, J. Galdos, E. Supo, J. Rendulich, and E. Sulla, “Continuous Blood Pressure Estimation in Wearable Devices Using Photoplethysmography: A Review,” Int. J. Emerging Technol. Adv. Eng., vol. 12, no. 10, 104-113, 2022, doi: https://doi.org/10.46338/ijetae1022_12
J. R. Huamani Talavera, E. A. S. Mendoza, N. M. Dávila, and E. Supo, “Implementation of a real-time 60 Hz interference cancellation algorithm for ECG signals based on ARM cortex M4 and ADS1298,” in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Perú, 2017, pp. 1-4, doi: https://doi.org/10.1109/INTERCON.2017.8079725
T. R. Sulla, S. J. Talavera, C. E. Supo, and A. A. Montoya, “Non invasive glucose monitor based on electric bioimpedance using AFE4300,” in 2019 IEEE XXVI International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Perú, 2019, pp. 1-3, doi: https://doi.org/10.1109/INTERCON.2019.8853561
J. R. Beingolea, M. A. Zea Vargas, R. Huallpa, X. Vilca, R. Bolivar, and J. Rendulich, “Assistive Devices: Technology Development for the Visually Impaired,” Designs, vol. 5, no. 4, 2021, art. no. 75, doi: https://doi.org/10.3390/designs5040075
J. R. Beingolea, H. A. Rodrigues, M. Zegarra, E. Sulla Espinoza, R. Torres Silva, and J. Rendulich, “Designing a Multiaxial Extensometric Force Platform: A Manufacturing Experience,” Electronics, vol. 10, no. 16, 2021, art. no. 1907, doi: https://doi.org/10.3390/electronics10161907
M. Huisa C., T. E. Figueroa, E. Supo, J. Rendulich, and E. Sulla Espinoza, “PCG heart sounds quality classification using neural networks and Smote Tomek Links for the Think Health project,” in 1st International Conference on Computational Intelligence and Innovative Technologies (ICCIIT), Pune, India, 2022, pp. 803-811, doi: https://doi.org/10.1007/978-981-19-7615-5_65
T. Eslami and F. Saeed, “Fast GPU PCC: A GPU-based technique to compute pairwise Pearson’s correlation coefficients for time series data FMRI study,” High-Throughput, vol. 7, no. 2, 2018, art. no. 11, doi: https://doi.org/10.3390/ht7020011
J. Lian, G. Garner, D. Muessig, and V. Lang, “A simple method to quantify the morphological similarity between signals,” Signal Process., vol. 90, no. 2, pp. 684-688, 2010, doi: https://doi.org/10.1016/j.sigpro.2009.07.010
M. J. Mc Loughlin, “New Electrocardiographic Methods Based on the Standard 12-Leads Ecg: Bipolar Precordial Leads,” 2022, ssrn.4250757, doi: http://dx.doi.org/10.2139/ssrn.4250757
T. N. Nguyen, T. H. Nguyen, and V. T. Ngo, “Artifact elimination in ECG signal using wavelet transform,” Telkomnika, vol. 18, no. 2, pp. 936-944, 2020, doi: https://doi.org/10.12928/TELKOMNIKA.v18i2.14403
V. Gupta, M. Mittal, and V. Mittal, “Performance evaluation of various pre-processing techniques for R peak detection in ECG signal,” IETE J. Res., vol. 68, no. 5, pp. 3267-3282, 2020, doi: https://doi.org/10.1080/03772063.2020.1756473
S. Banerjee and G. S. Kumar, “Quality guaranteed ECG signal compression using tunable-q wavelet transform and möbius transform based AFD,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-11, 2021, doi: https://doi.org/10.1109/TIM.2021.3122119
A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215-e220, 2000, doi: https://doi.org/10.1161/01.cir.101.23.e215
R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG Signaldatenbank CARDIODAT der PTB über das Internet,” J. Biomed. Eng., vol. 40, suppl. 1, 317, 1995, doi: https://doi.org/10.1515/bmte.1995.40.s1.317
P. Wagner, N. Strodthoff, R. Bousseljot, W. Samek, and T. Schaeffter, PTB-XL, a large publicly available electrocardiography dataset (version 1.0.1), PhysioNet. Accessed: 2024. [Online]. Available: https://doi.org/10.13026/x4td-x982
M. A. Reyna, E. A. Perez Alday, A. Gu, C. Liu, et al., “Classification of 12-lead ECGs: the physionet/computing in cardiology challenge 2020,” in 2020 Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4. doi: https://doi.org/10.22489/CinC.2020.236
J. Zheng, J. Zhang, S. A. Danioko, H. Yao, H. Guo, C. Rakovski, “A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients,” Sci. Data, vol. 7, 2020, art. no. 48, doi: https://doi.org/10.1038/s41597-020-0386-x
N.-T. Bui, G.-s. Byun, “The comparison features of ECG signal with different sampling frequencies and filter methods for real-time measurement,” Symmetry, vol. 13, no. 8, 2021, art. no. 1461, doi: https://doi.org/10.3390/sym13081461
D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer, “Correlation analysis on GPU systems using NVIDIA’s CUDA,” J. Real Time Image Proc., vol. 6, no. 4, pp. 275-280, 2011, doi: https://doi.org/10.1007/s11554-010-0162-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ingenieria Biomedica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.